Activation cross sections of deuteron-induced reactions on niobium up to 24 MeV^{\dagger}

M. Aikawa,^{*1,*2} Y. Komori,^{*2} and H. Haba^{*2}

One of the potential radioisotopes for nuclear medicine is 93m Mo.¹⁾ Several reactions to produce 93m Mo were studied, for example, proton- and deuteron-induced reactions on Nb, α -induced reactions on Zr, and ⁷Li-induced reactions on Y. In this paper, we focus on the deuteron-induced reactions on Nb because the cross sections of these reactions are about four times larger than those of the protoninduced reactions.²⁾ Four experimental data sets up to 50 MeV²⁻⁵⁾ were found in a literature survey, and they were scattered over several tens of mb at a peak of around 17 MeV. Therefore, we performed an experiment to measure the cross sections of the 93 Nb(d, 2n)^{93m}Mo reaction.

We used standard methods such as the stackedfoil activation method and off-line γ -ray spectrometry. The stacked target of the experiment was composed of thin metallic foils of 93 Nb (27.11 mg/cm², 99.9% purity, Nilaco Corp., Japan) and ^{nat}Ti (9.13 mg/cm², 99.6% purity, Nilaco Corp., Japan). The ^{nat}Ti foils were used to monitor the beam parameters. The target was irradiated by a 23.6-MeV deuteron beam at the AVF cyclotron of the RIKEN RI Beam Factory. The incident beam energy was measured by the timeof-flight method using a plastic scintillator monitor.⁶⁾ The irradiation lasted for 30 min with an average intensity of 200.3 nA, which was measured using a Faraday cup. The energy degradation of the beam in the stacked target was calculated using the SRIM code.⁷⁾ The beam parameters and the target thicknesses were assessed by the $^{nat}Ti(d, x)^{48}V$ monitor reaction. The γ lines from the foils were measured by using a highresolution HPGe detector.

The 263.049-keV γ line $(I_{\gamma} = 57.4\%)$ from the 93m Mo IT decay $(T_{1/2} = 6.85 \text{ h})$ was measured after a cooling time of about 10 h. The excitation function of the 93 Nb(d, 2n) 93m Mo reaction was derived from the measurement. The result is shown in Fig. 1 together with the earlier experimental data³⁻⁵⁾ and the TENDL-2017 data.⁸⁾ Our result shows good agreement with the other experimental data in the entire energy region. The theoretical calculation overestimates the experimental data.

The physical yield of 93m Mo from the 93 Nb(d, 2n) 93m Mo reaction was calculated from the excitation function using the spline fitting shown in Fig. 1 and the stopping power calculated by the SRIM code.⁷⁾ The re-

Tarkanyi 2007 Avrigeanu 2013 TENDL2017 This work Energy (MeV)

Fig. 1. Excitation function of the ${}^{93}Nb(d, 2n)^{93m}Mo$ reaction.

sult, together with the other experimental data,^{2,9)} is shown in Fig. 2. Our result is consistent with the two data studied earlier.^{2,9)}

References

- M. Sadeghi *et al.*, J. Radioanal. Nucl. Chem. **286**, 141 (2010).
- F. Ditrói *et al.*, Nucl. Instrum. Methods Phys. Res. B 373, 17 (2016).
- F. Ditrói *et al.*, Nucl. Instrum. Methods Phys. Res. B 161–163, 172 (2000).
- 4) F. Tárkányi *et al.*, Nucl. Instrum. Methods Phys. Res. B **255**, 297 (2007).
- 5) M. Avrigeanu et al., Phys. Rev. C 88, 014612 (2013).
- T. Watanabe *et al.*, Proc. 5th Int. Part. Accel. Conf. (IPAC2014), 3566 (2014).
- SRIM: the Stopping and Range of Ions in Matter, http: //www.srim.org/.
- 8) A. J. Koning et al., Nucl. Data Sheets 155, 1 (2019).
- 9) P. P. Dmitriev et al., INDC(CCP)-210, 1 (1983).

[†] Condensed from the article in Nucl. Instrum. Methods Phys. Res. B , 217 (2018)

^{*1} Faculty of Science, Hokkaido University

^{*&}lt;sup>2</sup> RIKEN Nishina Center