Column chromatography of astatine using weak base anion exchange resin

H. Ikeda,^{*1,*2,*3} H. Kikunaga,^{*2,*3} Y. Komori,^{*3} T. Yokokita,^{*3} D. Mori,^{*3} H. Haba,^{*3} and H. Watabe^{*1}

Astatine (At) is one of the nuclides expected to be applied for targeted α -particle therapy (TAT). Several methods for At separation are known. Two methods (dry distillation¹⁾ and wet $extraction^{2,3}$) are used mainly. Dry distillation can obtain a pure solution of At without impurities; however, it requires the construction of a complicated apparatus.¹⁾ On the other hand, although wet extraction is a simple method, the aqueous solution is contaminated with the organic solvent after back extraction. To solve these problems, we tried At separation using column chromatography.⁴⁾ However, the eluent was too alkaline for biological studies. Therefore, we need to find a solution with mild conditions. In the general wet separation of At, it is necessary to dissolve bismuth metal or bismuth oxide (Bi_2O_3) into nitric acid. We examined the dissolution method using hydrochloric acid (4 M HCl).⁴⁾ However, large amounts of anions other than a tatide anion (At^{-}) existed in the solution, which was used to dissolve the Bi_2O_3 target in our study. This influenced the behavior of At in column chromatography, and we could not achieve a high yield of At tracer. In this work, we reconsidered the chemical operation. Improvement of the dissolution method of the Bi₂O₃ target and the conditions of column chromatography were investigated. The radioactivity was measured with a high-purity germanium detector. The quantitation of ²¹¹At was carried out with γ -ray at 687 keV ($I_{\gamma} = 0.261\%$).

We produced ²¹¹At at the RIKEN Nishina Center using the ²⁰⁹Bi $(\alpha, 2n)^{211}$ At reaction (29 MeV, 250 particle nA, 30 min). A Bi₂O₃ pellet was used as the target. The irradiated target was added to 12 mL of 0.25 M EDTA · 2Na solution and 0.01 M L-ascorbic acid solution in a 50 mL tube. By shaking this mixture for 60 min, the Bi₂O₃ target was completely dissolved.

This solution was used for column chromatography studies. 3-Aminopropyl Silica Gel (Tokyo Chemical Industry Co., Ltd.) was used as the weak anion exchange resin, and 1 mL (7 mm $\phi \times 26$ mm) of the resin was filled into the Muromac[®] Mini-column (M size). This was flushed with 25 mL of EtOH, 10 mL of H₂O, and 10 mL of 1 M L-Ascorbic acid in this order (conditioning).

On dissolving the Bi_2O_3 target, 71% of ²¹¹At was adsorbed to the 50 mL tube. Column chromatography was carried out using the ²¹¹At remaining in the solution. The operations and results are shown in Fig. 1. We found that ²¹¹At could be separated with a 50% yield

- ^{*1} Cyclotron and Radioisotope Center, Tohoku University
- *² Research Center for Electron Photon Science, Tohoku Uni-
- versity
- *³ RIKEN Nishina Center

at a more mild condition (0.3–1 M NaOH). However, 7–25% and 1–7% of ²¹¹At were lost at the charge and washing processes, respectively. The column residue of ²¹¹At was 15–22%. The separation method of At in our study is still unstable and has to be improved.

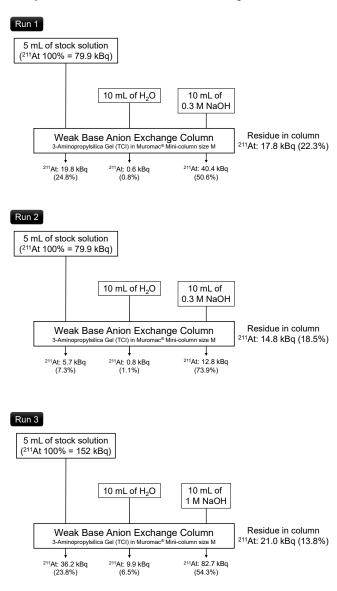


Fig. 1. Methods and results of column chromatography. Run 1 and Run2 had the same conditions; however, the results did not show the same behavior.

References

- 1) S. Lindegren et al., Appl. Radiat. Isot. 55, 157 (2001).
- M. S. Sultana *et al.*, J. Radioanal. Nucl. Chem. **243**, 631 (2000).
- C. Zona *et al.*, J. Radioanal. Nucl. Chem. **276**, 819 (2008).
- 4) H. Ikeda et al., RIKEN Accel. Prog. Rep. 51, 227 (2017).