Molecular analysis of the stay-green mutant *dye1* induced by carbon ion beams in rice[†]

H. Yamatani,^{*1} M. Nakano,^{*1} Y. Hayashi,^{*2} Y. Masuda,^{*1} T. Abe,^{*2} and M. Kusaba^{*1}

Chlorophyll synthesis and degradation are carefully regulated in plants not only because chlorophyll is an essential photosynthetic molecule, but also because in its free form it can damage cells photo-oxidatively.¹⁾ Mutants that retain the green of leaves under senescenceinducing conditions are known as stay-green mutants. We isolated a stay-green mutant from a rice M_2 population (Oryza sativa L.) irradiated with carbon ion beams (1.6 GeV, 23 keV/ μ m, 20 Gy). It exhibited delayed yellowing during natural senescence in the paddy field. This recessive mutant, named *delayed yellowing1-1* (*dye1-1*), was greener than the wild-type cultivar, Nipponbare, five weeks after heading, when most leaves are senescent (Fig. 1).

We performed map-based cloning of DYE1. An analysis of the F_2 population and its progeny revealed that DYE1 is located on chromosome 8. Fine mapping of DYE1 delimited the candidate region within 43.1 kb, which contained seven predicted genes (Fig. 2). A nextgeneration sequence analysis revealed that dye1-1 has a G-to-A substitution at the second exon of Lhca4, causing amino acid substitution from glutamic acid to lysine (E146K). Lhca4 is a subunit of the light-harvesting complex for photosystem I (PSI). This residue corresponds to E154 in Arabidopsis Lhca4, which is a pigment-binding site conserved not only among Lhca subunits but also among Lhcb subunits (light-harvesting complex for photosystem II) of different species.²⁾

A blue native-PAGE analysis revealed a significant change in the conformation of PSI-LHCI supercomplex in dye1-1 (Fig. 3). Nevertheless, the biomass of dye1-1 was comparable to that of the wild-type. Interestingly,

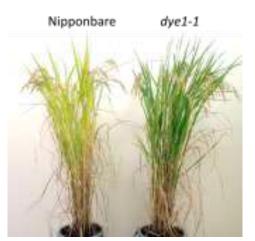
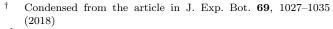



Fig. 1. dye1 exhibits a stay-green phenotype during natural senescence (five weeks after heading).

Graduate School of Science, Hiroshima University *2

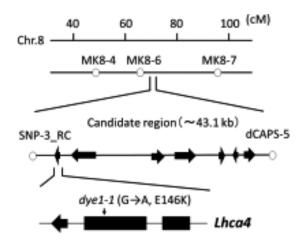


Fig. 2. DYE1 encodes Lhca4, a subunit of the PSI antenna complex LHCI.

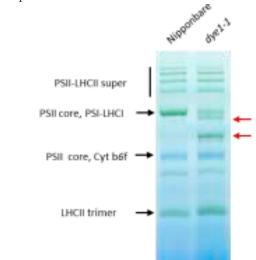


Fig. 3. Blue native-PAGE analysis of photosystems. Arrows indicate newly merged bands in *dye1-1*.

Lhcb1, a subunit of the trimeric LHCII, was highly accumulated in *dye1-1*. The high accumulation of LHCII in the LHCI mutant dye1-1 may compensate the reduced PSI activity caused by the impairment of LHCI antenna (Lhca4), suggesting a novel functional interaction between LHCI and LHCII.

Higher chlorophyll content in leaves is observed before and during senescence in dye1-1, indicating that the impairment of Lhca4 influences chlorophyll synthesis and/or degradation during the development and senescence of leaves in rice. It will be of great interest to examine whether mutants of other LHCI subunits show a high chlorophyll content/stay-green phenotype.

References

- 1) Tanaka et al., The Arabidopsis Book 9, e0145, (2011).
- 2) A. N. Melkozernov, R. E. Blankenship, J. Biol. Chem. **278**, 44542–44551, (2003).

RIKEN Nishina Center