Recent results of collective flow for $S\pi RIT$ -TPC experiment

M. Kurata-Nishimura,^{*1} J. Barney,^{*2,*1} G. Cerizza,^{*2,*1} J. Estee,^{*2,*1} B. Hong,^{*3} T. Isobe,^{*1} G. Jhang,^{*2,*1}

M. Kaneko,^{*4,*1} H. S. Lee,^{*7} J. W. Lee,^{*3,*1} J. Łukasik,^{*5} W. G. Lynch,^{*2} A. B. McIntosh,^{*8} T. Murakami,^{*4,*1}

P. Pawłowski,^{*5,*1} H. Sakurai,^{*1} C. Santamaria,^{*2,*1} R. Shane,^{*2} D. Suzuki,^{*1} M. B. Tsang,^{*2}

and S. J. Yennello^{*8} for $S\pi RIT$ Collaboration

The SAMURAI Pion-Reconstruction and Ion-Tracker-Time-Projection Chamber $(S\pi RIT-TPC)^{1}$ project aims to constrain a nuclear equation of state (EoS) at suprasaturation density using heavy ion collisions. The S π RIT-TPC was designed to measure π^{-}/π^{+} production ratio depending on isospin asymmetry. Since the pions are expected to be produced through the Δ resonance formation, π^{-}/π^{+} ratio is related to some kind of nuetron-to-proton squared ratio which is then supposed to be sensitive to the symmetry energy at high densities.³⁾

Additionally, measurements of collective flow with proton and neutron are proposed as a useful $probe^{2}$ to nuclear EOS, because neutrons are repelled from dense region as a result of the repulsive isospin symmetry potential with increase of density, while protons are opposite.

The first experiment had been performed in April 2016 with 132 Sn and 108 Sn beams at 270 MeV/nucleon on ¹¹²Sn and ¹²⁴Sn targets at SAMURAI in RIBF. Neutrons were detected by $NeuLAND^{4}$ covering the midrapidity region. In this paper, recent results of the collective flow for proton and neutron will be discussed.

A track reconstruction was done using $S\pi RITROOT$ software and particle identification ability is discussed in Ref. 5).

An orientation angle of reaction plane, Ψ was determined with summing up a transverse momentum of light charged fragments, p, d, t, ³He, and ⁴He event by event, as following.

$$\vec{Q} = \begin{pmatrix} Q\cos\Psi\\ Q\sin\Psi \end{pmatrix} = \sum_{k=1}^{N} \omega_k \begin{pmatrix} \cos\phi_k\\ \sin\phi_k \end{pmatrix}$$
(1)

 $\omega_k = \left\{ \begin{array}{cc} 1 & \text{if rapidity in the center of mass} > 0 \\ -1 & \text{otherwise} \end{array} \right.$

Since the distribution of \varPsi was distorted due to a rectangular shape of $S\pi RIT$ -TPC, it was corrected applying a re-centering and a shifting method.⁶⁾ The azimuthal angle distributions with respect to Ψ were plotted for protons measured with 132 Sn + 124 Sn in Fig. 1. In these plots, Ψ was determined with all light fragments excluding itself to avoid auto correlation. Red lines shows fitting results with a formula

- *3 Department of Physics, Korea University
- *4Department of Physics, Kyoto University
- *5 IFJ PAN
- *6 Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University
- Rare Isotope Science Project, Institute for Basic Science
- *8 Cyclotron Institute, Texas A&M University

(c) 2 3 Δ(φ - Ψ) 2 3 Δ(φ - Ψ)

Fig. 1. Azimuthal angle distributions of proton with respect to Ψ . The rapidity coverages in the center of mass are (a) target-rapidity: $-4.0 \sim -0.06$, (b) mid-rapidity: $-0.06 \sim 0.06$, and (c) Beam-rapidity: $0.06 \sim 4.0$). Red lines indicate fitting with Eq. (2).

$$\frac{2\pi}{N}\frac{dN}{d\phi} = 1 + 2v_1\cos(\phi) + 2v_2\cos(2\phi) + \dots$$
(2)

The negative and positive v_1 were observed in the target (a) and beam rapidity region (c), which is the evidence of directed flow. The negative v_2 was observed in the mid rapidity region (b), which indicates out-ofplane elliptic flow of protons. The strength of v_1 and v_2 are needed to be corrected with a reaction plane resolution to compare between $^{132}\mathrm{Sn}$ + $^{124}\mathrm{Sn}$ and $^{108}\mathrm{Sn}$ + ¹¹²Sn collisions. Neutron's collective flow was also observed within a limited acceptance. Simulation and further analysis are necessary to extract EoS information. Addition to neutron to proton ratio, ³H to ³He analysis is ongoing, which is expected to serve in resolving ambiguities caused by the effective-mass splitting between neutrons and proton.

This work is supported by the U.S. Department of Energy under Grant Nos. DE-SC0004835, DE-SC0014530, DE-NA0002923, US National Science Foundation Grant No. PHY-1565546, the Japanese MEXT KAKENHI (Grant-in-Aid for Scientific Research on Innovative Areas) grant No. 24105004, and the Polish National Science Center (NCN), under contract Nos. UMO- 2013/ 09/B/ST2/04064 and UMO-2013/10/M/ST2/00624.

References

- 1) R. Shane et al., Nucl. Instrum. Methods Phys. Res. A 784, 513 (2015).
- 2) B. -A. Li et al., Phys. Rev. Lett. 85, 4221 (2000).
- N. Ikeno et al., Phys. Rev. C 97, 069902 (2018). 3)
- NeuLAND Technical Design Report, http://www. 4)fair-center.eu/fileadmin/fair/experiments/NUSTAR/ Pdf/TDRs/NeuLAND-TDR-Web.pdf, accessed: 2016/01/21.
- 5) M. Kaneko *et al.*, in this report.
- 6) J.-Y. Ollitrault et al., Nucl. Phys. A 638, 195c (1998).

^{*1} **RIKEN** Nishina Center

^{*2} NSCL and Dept. of Phys. & Ast., Michigan State University