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One of the most important insight on nuclear struc-
ture obtained from studies performed at radioactive ion
beam facilities is the modification of the shell closures
with varying number of protons and neutrons.1) This
shell-evolution has been widely studied, in particular
on the neutron-rich side of the nuclear chart. Experi-
mental evidence suggests, for example, the appearance
of new magic numbers at N = 32, 34 in Ca isotopes,2,3)

as well as the disappearance of the shell closures at
N = 8, 20 and 281) in various neutron-rich isotopes.
For the Ni isotopic chain, the reduced transition proba-
bility, B(E2)↑, measured between N = 28 and N = 40,
shows a parabolic trend which indicates a subshell clo-
sure at N = 40. A measurement of the B(E2)↑ value of
70Ni indicated an enhanced collectivity for N = 42,4)

thus a possible weakening of the Z = 28 gap towards
78Ni. In contrast, measurements of 72, 74Ni5,6) show a
reduced B(E2)↑ value for these isotopes, corroborating
the magic character of the N = 50 and Z = 28 shell
gaps.

In the experiment, performed at the RIBF as part
of the first SEASTAR campaign, a 238U primary beam
with an energy of 345 MeV/nucleon and an average
intensity of 12 pnA impinged on a 3 mm thick 9Be tar-
get at the entrance of BigRIPS.7) After selection and
identification, 72, 74Ni and 76, 80Zn ions were focused on
the MINOS device,8) composed of a 102(1) mm long
liquid hydrogen target surrounded by a Time Projec-
tion Chamber (TPC). Due to the low efficiency of MI-
NOS for the (p, p′) reaction, the information of the TPC
was not used, leading to a decrease of the resolution of
1 MeV γ-rays from a typical 9% using MINOS, to 14%.
Reaction products were identified using the ZeroDe-
gree spectrometer,7) and γ rays were detected with the
DALI2 array,9) composed of 186 NaI(Tl) detectors. The
full-energy-peak efficiency of the array was determined
using a detailed Geant4 simulation and was found to
be 14% at 1.33 MeV with an energy resolution of 6.2%
(FWHM) for a stationary source.

Direct proton inelastic scattering cross sections to the
2+1 and 4+1 states were inferred from the γ-ray spec-
trum of each isotope. Such cross sections were analyzed
considering two reaction models. First, a microscopic

approach, based on transition densities obtained from
Quasiparticle Random Phase Approximation (QRPA)
and the Jeukenne-Lejeune-Mahaux (JLM) potential,10)

was used to calculate theoretical inelastic scattering
cross sections. To deal with the high energies of the
beam in front of the target (≈ 270 MeV), an extension
of the JLM folding model above 200 MeV/nucleon was
developed. This approach provided the theoretical
cross sections for inelastic scattering to the 2+1 state
of 72, 74Ni and 80Zn. By comparing the theoretical and
experimental cross sections, neutron-to-proton matrix
element ratios, Mn/Mp, were obtained. The results
suggest that for the Ni isotopes (Mn/Mp) > (N/Z),
which implies that the contribution of the neutrons to
the collectivity is enhanced. For 80Zn, the calculation
yields (Mn/Mp) < (N/Z), which is in agreement with
an increased role of the protons to the collectivity. Sec-
ond, deformation lengths for the first quadrupole exci-
tation of each isotope were obtained using the ECIS-
9711) code. The calculations included a collective vi-
brational model and used the KD02 global optical po-
tential.12) From the deformation lengths a matter de-
formation parameter β2(p, p

′) was obtained and com-
pared with previously measured charge deformations,
β2(EM). For the Ni isotopes β2(p, p

′) is slightly higher
than β2(EM), consistent with a previous measurement
on 74Ni13) and with the conservation of the Z = 28 gap
for neutron-rich Ni isotopes. The opposite effect is ob-
served for 80Zn, thus suggesting that the shell closure
for N = 50 is conserved when approaching Z = 28.
This work represents a step towards a consistent inter-
pretation of the (p, p′) data and will be beneficial for
the extraction of useful physics parameters linked to
nuclear structure calculations.
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∗2 HbmGgnuhcsrofnenoirewhcSrüfmurtnezztlomleHISG
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