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Improvement of functionals in density functional theory using inverse
Kohn-Sham method and density functional perturbation theory†

D. Ohashi,∗1,∗2 T. Naito,∗1,∗2 and H. Z. Liang∗2,∗1

The density functional theory (DFT) is one of the
most successful approaches to calculate the ground-
state properties. The ground-state density ρgs and
energy Egs are obtained by solving the Kohn-Sham
(KS) equation.1,2) The ground-state energy is given
by Egs = T0 [ρgs] +

∫
vext (r) ρgs (r) dr + EHxc [ρgs],

where T0 is the KS kinetic energy, vext is the external
field, and EHxc [ρ] is the Hartree-exchange-correlation
energy density functional (EDF). However, the accu-
racy of DFT calculations depends on the determination
of EHxc [ρ] as it is unknown. The inverse Kohn-Sham
(IKS) method was proposed toward the improvement
of EDFs. Nevertheless, the actual method to improve
EDFs has not been explicitly determined.
In this work, for the first time, a new way to im-

prove EDFs by the combination of the IKS method
and density functional perturbation theory (DFPT) is
proposed. In this method, a conventional ẼHxc [ρ] is
assumed to be close enough to EHxc [ρ] and the differ-
ence is considered in the first-order DFPT with small
λ as EHxc [ρ] = ẼHxc [ρ] + λE

(1)
Hxc [ρ] +O

(
λ2

)
. In addi-

tion, ρgs (r) and Egs are expanded perturbatively. The
perturbation is assumed to not affect the external field,
and ρgs (r) is assumed to be given.

Under the assumptions, we calculate Egs based on
the first-order DFPT and on the IKS method. By com-

paring them, the following equation for E
(1)
Hxc [ρ] is ob-

tained:

λE
(1)
Hxc [ρ̃gs]− λE

(1)
Hxc [ρgs] + λ

∫
δE

(1)
Hxc [ρgs]

δρ (r)
ρgs (r) dr

=
N∑
i=1

εi + ẼHxc [ρgs]−
∫

δẼHxc [ρgs]

δρ (r)
ρgs (r) dr−Ẽgs,

where εi is the single-particle energy obtained from
ρgs using the IKS method. Because it is diffi-

cult to solve this equation, we assume E
(1)
Hxc [ρ] =∑

k Ak

∫
[ρ (r)]

αk dr and iteratively determine its

value. Finally, ẼHxc [ρ] is improved to be ẼHxc [ρ] +

λE
(1)
Hxc [ρ].
As benchmark calculations, ρgs (r) is calculated

from the known Etarget
Hxc [ρ] and we attempt to repro-

duce it from a less accurate ẼHxc. Here, we use the
Hartree and LDA exchange functional as Etarget

Hxc and

the Hartree one as ẼHxc. The pairs of noble-gas atoms
He-Ne and Xe-Rn are used because two unknowns Ai

and αi should be determined at each iteration. Addi-
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Fig. 1. Exchange energy density ε1stx (rs) calculated in

the first iteration and ratios ε1stx (rs) /ε
target
x (rs). The

Hartree atomic unit is used here.

tionally, they are easy to handle owing to their spher-
ical symmetry.
It is found that A1 and α1 are obtained within 7.2%

and 1.0% errors in He-Ne, and within 2.3% and 0.2%
errors in Xe-Rn, respectively, from the LDA results.
The calculated exchange energy density at the first

iteration, ε1stx (rs), and its ratio to the LDA are shown
in Fig. 1 for the pairs of He-Ne and Xe-Rn with
dashed and dot lines, respectively, while the LDA
exchange functional is represented with a solid line.
The energy density εx (ρ) and the Wigner-Seitz ra-
dius rs are defined as Ex [ρ] =

∫
εx (ρ) ρ (r) dr and

rs = [3/ (4πρ)]
1/3

, respectively. The Xe-Rn pair repro-
duces the LDA functional within a few percents.
Moreover, it is found that the ground-state energy

becomes closer to the LDA as the iteration proceeds.
The ground-state energies of He, Ne, Xe, and Rn are
finally reproduced within 0.4%, 0.003%, 0.002%, and
0.0003% errors, respectively, comparing with 28%, 8%,
2%, and 2% errors at the zeroth step. It is also found
that the ground-state density is improved by the iter-
ations.
To summarize, our method accurately reproduces

the LDA functionals. The accuracy of ground-state
energies and densities are improved by two to three or-
ders and one to two orders of magnitude, respectively.
This method can be effective for nuclear DFT as well.
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