Bubble nuclei within the self-consistent Hartree-Fock mean field plus pairing approach[†]

L. Tan Phuc,^{*1,*2} N. Quang Hung,^{*1} and N. Dinh Dang^{*3}

A bubble structure is the depletion of nucleon density at its center, which is caused by the absence of the nucleon on the s-orbitals. The peak of the swave function at r = 0 significantly contributes to the nucleon density. Therefore, the absence of the swave creates the bubble structure. The pairing correlation and the low-ling excitations affect this bubble structure. In this report, we study the evolution of the bubble structure within the self-consistent Skyrme-Hartree-Fock mean field (HF) plus pairing correlation. The latter is included in two ways: within the Bardeen-Cooper-Schrieffer theory (BCS) and within the exact pairing solution $(EP)^{1}$ at finite temperature, which are referred to as the FTBCS and FTEP, respectively. The bubble candidates are the neutronrich ²²O (N = 14, Z = 8) and doubly-magic ³⁴Si (N = 20, Z = 14) nuclei. The calculations are performed with the Skyrme-type interaction MSk3. The binding energies (BE) and two proton/neutron separation energies $(S_{2p/2n})$ of these candidate nuclei are fitted to the experimental data by adjusting the parameters G_N and G_Z of the neutron and proton pairing interactions, respectively. The finite-temperature HF (FTHF), whose single-particle occupation numbers follow the Fermi-Dirac distribution, is also used to make a comparison with the FTBCS and FTEP. The bubble structure is evaluated by the depletion factor $F = (\rho_{max} - \rho_{cent}) / \rho_{max}$, where ρ_{max} and ρ_{cent} are the maximum and central nucleon densities, respectively.

The numerical calculations are performed within the FTHF, FTBCS and FTEP for ²²O and ³⁴Si. The pairing effect is known to be dominant in the region around Fermi surface so that a truncated space with the level $1d_{5/2}$ located below Fermi surface and six levels $2s_{1/2}$, $1d_{3/2}$, $1f_{7/2}$, $2p_{3/2}$, $1f_{5/2}$, and $2p_{1/2}$ above it is taken into account for the neutron shell of ²²O and proton shell of 34 Si. As for the proton shell of 22 O and neutron shell of ³⁴Si, they are closed and therefore are not affected by pairing. For ³⁴Si, the experimental value for the occupation number of the $2s_{1/2}$ level has been measured and reported by Mutschler $et \ al.^{2}$) The pairing interaction parameter G is adjusted to reproduce this value, which is used as the initial input. For ^{22}O , because the occupation number of the $2s_{1/2}$ level is not known, the calculations are based on reproducing its

a) 220 b) ³⁴Si FTHF FTBCS FTFP FTHF 0. ---- FTBCS FTEP Depletion factor factor 0.2 --- FTEP-BSk14 Depletion 01 0 0.5 1.5 T (MeV) T (MeV)

Fig. 1. The depletion factors of $^{22}\mathrm{O}$ and $^{34}\mathrm{Si}$ obtained within the FTHF, FTBCS and FTEP at different temperatures.

BE and S_{2n} values.

The results obtained show that, at $T \simeq 0$, the depletion factors F within the FTBCS and FTEP reach 19% for proton density in 34 Si and 2% for neutron density in 22 O, whereas the FTHF without pairing produces the value of F at around 24% and 11% for ^{34}Si and ²²O, respectively (at T = 0.1 MeV). These results indicate that the effect of pairing correlation on the bubble structure is strong in the neutron-rich nucleus ²²O, and weak in the doubly-magic nucleus ³⁴Si. With increasing T, the bubbles in these nuclei become less pronounced and completely disappear when T reaches the critical value T_F . The value of T_F in ³⁴Si is around 4 MeV within the FTBCS and FTEP, whereas, for ²²O, it is 0.57 MeV within the FTBCS and 0.85 MeV within the FTEP (Fig. 1). This difference can be explained by the fact that the BCS pairing gap Δ collapses when T reaches a critical value $T_c = 0.57\Delta$ (T = 0), which makes the depletion factor coincide with that predicted by the FTHF, whereas the EP pairing gap is always finite with increasing T. This phenomenon causes a significant difference in T_F for the neutron-rich nucleus 22 O, where the pairing correlation is dominant. On the other hand, this phenomenon does not seem to take place in the doubly-magic nucleus ³⁴Si. The BSk14 interaction, which is also used in predicting the neutron bubble in ²²O, shows a small pairing in this nucleus instead of strong pairing obtained by using the MSk3 interaction. This indicates that the MSk3 is more suitable than the BSk14 in our study.

References

- 1) A. Volya, B. A. Brown, V. Zelevinsky, Phys. Lett. B **509**, 37 (2001).
- 2) A. Mutschler et al., Nature 13, 152 (2017).

Condensed from the article in Phys. Rev. C 97, 024331 (2018)

^{*1} Duy Tan University, Ho Chi Minh City, Vietnam

^{*2} University of Science - Vietnam National University, Ho Chi Minh City, Vietnam

^{*3} **RIKEN** Nishina Center