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Self-consistent constrained HFB in odd-A nuclei†

K. Sugawara-Tanabe∗1,∗2 and K. Tanabe∗3

All existing constrained Hartree-Fock-Bogoliubov
(CHFB) calculations neglect the Fock or the exchange
terms. Here, the constraint conditions are applica-
ble to the proton number Z, neutron number N ,
and the angular momentum along the chosen x-axis
⟨Ix⟩ =

√
I(I + 1). The numerical calculations start

from the spherical single-particle basis and include
the residual quadrupole-quadrupole (Q-Q), monopole-
pairing (MP), and quadruple-pairing (QP) interac-
tions.1) In the approximation without the exchange
terms, only the terms Y 2

0 and Y 2
2 + Y 2

−2 in the Q-
Q interaction are considered but the terms Y 2

1 ± Y 2
−1

and Y 2
2 − Y 2

−2 are not. We have developed the code
to include all exchange terms in the residual inter-
actions. The exchange terms of Q-Q contribute to
the self-energy Γ and the gap ∆, and those of MP
and QP to Γ . Then, the constraint on angular mo-
mentum ⟨Ix⟩ becomes

√
I(I + 1)− ⟨I2z ⟩. We chose

the signature invariant base that reduces the diagonal-
ization space to half2) because the total Hamiltonian
with three constraints H ′ is invariant under the op-
erator Rx = exp(−iπIx). All input matrix elements
are rewritten in this base and the spherical single-
particle operator in this base Ck is transformed to
quasiparticle operators α†

i =
∑

k>0(C
†
kAki + Ck̂Bki)

and α†
î
=

∑
k>0(C

†
k̂
Âki + CkB̂ki), where the notation

k̂ is the time reversal of k. Then, the CHFB equation
becomes:

(
h1 − ωjx ∆T

∆∗ −h2∗ − ωjx

)(
B̂∗ A

Â∗ B

)

=

(
B̂∗ A

Â∗ B

)(
−Λ̂ 0
0 Λ

)
, (1)

where h1 (h2) includes the spherical single-particle en-
ergy and self-energy Γ and ω is the Lagrange multiplier
for Ix =

∑
k,l>0(jx)k,l(C

†
k Cl − C†

k̂
Cl̂). When there is

no ωjx, i.e., without constraint on ⟨Ix⟩, h2, Λ̂, Â, and
B̂ are reduced to h1, Λ, A, and B, respectively. The
iteration procedure in the numerical analysis is based
on the gradient method.3)

Figure 1 compares I versus transition energy ∆E =
E(I)−E(I − 2). The parameters are the same spheri-
cal single-particle energy as listed in Table 1 in Ref. 1).

The strength of MP is G
(0)
π+π+ = G

(0)
π−π− = G

(0)
π+π− =

−0.22 MeV and G
(0)
ν+ν+ = G

(0)
ν−ν− = G

(0)
ν+ν− =
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Fig. 1. Backbending plot for I as a function of energy dif-

ference ∆E = E(I) − E(I − 2). Experimental data is

taken from Ref. 4).

−0.23 MeV. The strength of QP is 10% of MP, ex-
pressed in terms of MeV/b4 and the strength of QQ
is χππ = −0.030 MeV/b4, χνν = −0.032 MeV/b4,
and χπν = −0.100 MeV/b4 with an oscillator length
b. These numerical results are consistent with the ex-
perimental data except for the I = 15/2− state. The
constraint on the proton number Z is effective but the
value of Z for + and − parity states is mixed owing

to G
(0)
π+π−. For example, Z+ = 13.58 and Z− = 17.42

at I = 15/2−, while Z+ = 13.99 and Z− = 17.01 at
I = 55/2−, where Z = Z+ + Z− is the proton num-
ber outside the magic number 28. For better results,
another constraint on Z− should be included or the
MP and QP interactions between the + and − parity
states should be dropped. This calculation is prelim-
inary and there is room for finding better parameter
sets.
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