PARTICLE TRACKING SIMULATION WITH SPACE CHARGE EFFECTS FOR AN INDUCTION SYNCHRONRON AND PRELIMINARY APPLICATION TO THE KEK DIGITAL ACCELERATOR

Xingguang Liu
Tokyo Institute of Technology, Nagatsuda, Kanagawa
High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan

Abstract

In order to study the beam behaviour of the induction synchrotron which features low energy injection, a dedicated particle tracking simulation code with a 2.5D space charge field solver, which takes into account of the boundary condition, has been developed. The beam dynamics included in this code are discussed and simulation results assuming parameters of the KEK Digital Accelerator are presented. This code will help to understand the various features of the beam behaviour in the present beam commissioning and serve as a tool for the design of the future induction synchrotrons.

Scheme Design

$x = (x, xp, y, yp, z, dpp)$

$\bar{x} = (0, \Delta x, 0, 0, \Delta y, 0)$

2.5D Space Charge Solver

Finite method for Poisson’s equation

$\phi = \frac{P}{\varepsilon_0}$

$\nabla^2 \phi(x, y) = \frac{\phi(x+\Delta x, y) - \phi(x, y)}{\Delta x} + \frac{\phi(x, y+\Delta y) - \phi(x, y)}{\Delta y}$

Boundary Matrix

<table>
<thead>
<tr>
<th>-1</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>

2D Justification

$E[r] = \frac{\lambda}{2\pi\varepsilon_0} \frac{r}{a^2}$

Preliminary Application

Injection

Turn 25

Summary & Future work

✓ A general simulation code considering the beam induced space charge fields with boundary conditions for the induction synchrotron.

✓ A 2.5D “slice-by-slice” scheme and space charge solver

✓ Preliminary application to the KEK-DA.

Further study with the simulation to understand the beam behaviour in the KEK-DA ring will be continued and this simulation code can also be applied to the future induction synchrotron's design and study.