Medium modifications on vector mesons in 12GeV p+A reactions

Megumi Naruki for the E325 collaboration

- Physics Motivation
- Experimental Setup
- Result of data analysis
- Theoretical interpretation

Physics Motivation

E325 experiment

observed Invariant Mass of $\mathrm{e}^{+} \mathrm{e}^{-}, \mathrm{K}^{+} \mathrm{K}^{-}$ in $12 \mathrm{GeV} p+\mathrm{A} \rightarrow \rho, \omega, \phi+\mathrm{X}$ reactions
first dilepton measurement at the normal nuclear density
Expected Invariant Mass distribution of ρ and ω mass modified by the formula $\mathrm{m} * / \mathrm{m}=1-0.16$ * ρ / ρ_{0} Prog.Theor.Phys.95(1996)1009

Slowly moving $\rho \omega \phi\left(p_{\text {lab }} \sim 2 \mathrm{GeV} / \mathrm{c}\right)$
\rightarrow Large Acceptance Spectrometer

Detector Setup

Invariant Mass Spectrum of $\mathrm{e}^{+} \mathrm{e}^{-}$

we examine how well the data is reproduced with known hadronic sources \& combinatorial background

On the Fit

- resonance
- relativistic Breit-Wigner shape
- generator : nuclear cascade code JAM gives momentum
- experimental effect estimated through Geant4 simulation - energy loss including Bremsstrahlung, multiple scattering, tracking performance and detector acceptance.
- background
- combinatorial background obtained by mixed events.
- fit parameters
- relative abundances of mesons $(\rho, \omega, \phi), \eta$ Dalitz and background are obtained by the fitting.

Invariant Mass Spectrum of $\mathrm{e}^{+} \mathrm{e}^{-}$

 the region $0.60-0.76 \mathrm{GeV} / \mathrm{c}^{2}$ is excluded from the fit.
the excess over the known hadronic sources on the low mass side of ω peak has been observed.

Invariant Mass Spectrum of $\mathrm{e}^{+} \mathrm{e}^{-}$(BG subtracted)

 the region $0.60-0.76 \mathrm{GeV} / \mathrm{c}^{2}$ is excluded from the fit.
ρ / ω ratio is consistent with zero
$\mathrm{N} \rho / \mathrm{N} \omega=0.0 \pm 0.03$ (stat.) ± 0.09 (sys.) 0.0 ± 0.04 (stat.) ± 0.21 (sys.) It is pretty much surprising because the ρ / ω is known to be unity in pp interactions (Blobel et. al, PLB48('74)73)

Toy Model Calculation

- pole mass: $\frac{m^{*}}{m}=1-k \frac{\rho}{\rho^{0}}$ (Hatsuda-Lee formula)
- generated at surface of incident hemisphere of target nucleus

$$
\begin{aligned}
& -\alpha_{\omega}=0.71 \pm 0.02 \\
& \left(\alpha_{\phi}=0.94 \pm 0.05\right) \quad[\text { nucl-ex/0603013] }
\end{aligned}
$$

- decay inside nucleus:

	C	Cu
ρ	52%	66%
ω	5%	10%

Cu
$\mathrm{r}=4.1 \mathrm{fm}$

$$
\begin{gathered}
C \\
r=2.3 f m
\end{gathered}
$$

- density distribution - Woods-Saxon
- mass spectrum: relativistic Breit-Wigner Shape
- no width modification

Confidence ellipsoids for k and ρ / ω shift model : $\mathrm{m} / \mathrm{m}=1-\mathrm{k} \rho / \rho_{0}$

- C and Cu data were simultaneously fitted.

■ free paramters

- production ratio ρ / ω
-shift parameter k
■Best-Fit values are

$$
\begin{aligned}
& \mathrm{k}= 9.2 \pm 0.2 \% \\
& \rho / \omega= 0.7 \pm 0.1(\mathrm{C}) \\
& 0.9 \pm 0.2(\mathrm{Cu}) \\
& \rightarrow \text { mass of } \rho / \omega \text { meson } \\
& \text { decrease by } 9 \% \text { at } \\
& \text { normal nuclear density. }
\end{aligned}
$$

Fit Results of Model Calculation

the excesses for C and Cu are well reproduced by the model including the mass modification.

Invariant spectra of $\phi \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$

Contours for \mathbf{k}_{1} and \mathbf{k}_{2} of $\phi \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$

MC including in-medium mass modificaton of ϕ

Pole Mass Shift
$M(\rho) / M(0)=1-k_{1}\left(\rho / \rho_{0}\right)$
Width Broadening
$\Gamma(\rho) / \Gamma(0)=1+k_{2}\left(\rho / \rho_{0}\right)$
ϕ mesons are generated uniformly in target nucleus

We fitted the observed mass spectra with modified MC shape in all $\beta \gamma$ region

Best Fit Value:
$\mathrm{k}_{1}=0.042+/-0.008$
$\mathbf{k}_{\mathbf{2}}=2.6 \quad+/-1.9$

Summary

- KEK PS-E325 experiment measured $\mathrm{e}^{+} \mathrm{e}^{-}$pairs in 12 GeV p+A reactions to investigate invariant mass of vector mesons decaying in nuclear matter.
- We have observed the excess over the known hadronic sources at low-mass side of ω. Obtained ρ / ω ratio indicates that the excess is mainly due to the modification of ρ mesons.
- We also observed the excess at low-mass side of ϕ, only at the low $\beta \gamma$ region of Cu data.
- The data was well reproduced by the model calculation, in which;
\checkmark the mass of ρ / ω decreases by 9% at ρ_{0},
\checkmark for ϕ, the mass decreases by 4% and the width increases by a factor of 4 at ρ_{0}.

