Medium modifications on vector mesons in 12GeV p+A reactions

Megumi Naruki for the E325 collaboration

- Physics Motivation
- Experimental Setup
- Result of data analysis
- Theoretical interpretation

81/31/100

PRL96(2006)092301

E325 experiment

observed Invariant Mass of e^+e^- , $K^+K^$ in 12GeV p + A $\rightarrow \rho$, ω , ϕ + X reactions

first dilepton measurement at the normal nuclear density

Expected Invariant Mass distribution of ρ and ω

mass modified by the formula $m^*/m=1-0.16 * \rho/\rho_0$ Prog.Theor.Phys.95(1996)1009

Detector Setup

Invariant Mass Spectrum of e⁺e⁻

we examine how well the data is reproduced with known hadronic sources & combinatorial background

On the Fit

resonance

- relativistic Breit-Wigner shape
- generator : nuclear cascade code JAM gives momentum
- experimental effect estimated through Geant4 simulation
 energy loss including Bremsstrahlung, multiple
 scattering, tracking performance and detector acceptance.

background

- combinatorial background obtained by mixed events.

fit parameters

- relative abundances of mesons (ρ, ω, ϕ) , η Dalitz and background are obtained by the fitting.

the excess over the known hadronic sources on the low mass side of ω peak has been observed.

Invariant Mass Spectrum of e⁺e⁻ (BG subtracted)

the region 0.60-0.76 GeV/ c^2 is excluded from the fit.

unity in pp interactions (Blobel et. al, PLB48('74)73)

Toy Model Calculation

- density distribution Woods-Saxon
- mass spectrum: relativistic Breit-Wigner Shape
- no width modification

Confidence ellipsoids for k and ρ/ω shift model : m*/m = 1 – k ρ/ρ_0

- C and Cu data were simultaneously fitted.
- free paramters
 - production ratio ρ/ω
 - -shift parameter k
- Best-Fit values are
- $k = 9.2 \pm 0.2\%$
- ρ/ω = 0.7 \pm 0.1 (C)

0.9±0.2 (Cu)

→ mass of ρ / ω meson decrease by 9% at normal nuclear density.

Fit Results of Model Calculation

the excesses for C and Cu are well reproduced by the model including the mass modification.

Invariant spectra of $\phi \rightarrow e^+e^-$

βγ<1.25 (Slow)

1.25<βγ<1.75

1.75<βγ (Fast)

Contours for k_1 and k_2 of $\phi \rightarrow e^+e^-$

MC including in-medium mass modificaton of $\boldsymbol{\varphi}$

Pole Mass Shift

 $M(\rho)/M(0) = 1 - k_1 (\rho/\rho_0)$

Width Broadening

$$\Gamma(\rho) / \Gamma(0) = 1 + k_2 (\rho/\rho_0)$$

φ mesons are generateduniformly in target nucleus

We fitted the observed mass spectra with modified MC shape in all $\beta\gamma$ region

Best Fit Value: k₁ = 0.042 +/- 0.008 **k**₂ = 2.6 +/- 1.9

Summary

- KEK PS-E325 experiment measured e⁺e⁻ pairs in 12GeV p+A reactions to investigate invariant mass of vector mesons decaying in nuclear matter.
- We have observed the excess over the known hadronic sources at low-mass side of ω. Obtained ρ / ω ratio indicates that the excess is mainly due to the modification of ρ mesons.
- We also observed the excess at low-mass side of φ, only at the low βγ region of Cu data.
- The data was well reproduced by the model calculation, in which;
 - \checkmark the mass of ρ/ω decreases by 9% at ρ_0 ,
 - \checkmark for ϕ , the mass decreases by 4% and the width increases by a factor of 4 at ρ_0 .