Measurement for e⁺e⁻ Spectral Modification of ρ/ω mesons in 12GeV p+A reactions

M. Naruki for the KEK-PS E325 collaboration

- Physics Motivation
- Experimental Setup
- Result of 2002 data analysis
- Discussion

nucl-ex/0504016

E325 collaboration

Kyoto Univ._a , KEK_b, RIKEN_c, CNS Univ. of Tokyo_d, ICEPP Univ. of Tokyo_e,Tohoku Univ._f

Megumi Naruki, RIKEN, Japan

J. Chiba_b, H. En'yo_c, Y. Fukao_a, H. Funahashi_a, H. Hamagaki_d, M. Ieiri_b, M. Ishino_e, H. Kanda_f, M. Kitaguchi_a, S. Mihara_e, K. Miwa_a, T. Miyashita_a, T. Murakami_a, R. Muto_c, T. Nakura_a, M. Nomachi_b, K. Ozawa_d, F. Sakuma_a, O. Sasaki_b, H.D. Sato_a, M. Sekimoto_b, T. Tabaru_c, K.H. Tanaka_b, M. Togawa_a, S. Yamada_a, S. Yokkaichi_c, Y. Yoshimura_a (KEK-PS *E325* Collaboration)

Physics Motivation

Current quarks ~5/MeV/c²

Hadrons ~1GeV/c²

Constituent quarks ~300MeV/c²

mass modification at finite density

Vector Mesons ρ,ω,φ

Related Experiments

- hot
 - CERES@SPS('93) 158A GeV Pb

Au collisions; large
 enhancement observed in e⁺e⁻

spectrum

 – NA60@SPS/HADES@GSI/RHIC dilepton measurements; on going

• dense

- TAGX@INS('03) ²H,³He,¹²C(γπ⁺π⁻)X; ρ mass modified but final state interaction, sub threshold production may effect...
- TAPS@ELSA('05) γ +A $\rightarrow \omega$, $\omega \rightarrow \pi^0 \gamma$; 14% mass decrease

E325 experiment

measures Invariant Mass of e⁺e⁻, K⁺K⁻ in 12GeV p + A $\rightarrow \rho$, ω , ϕ + X reactions

- low energy : the mass modification at the normal nuclear density
- •dilepton measurement : free from final state interactions

Expected Invariant Mass distribution of ρ and ω

Detector Setup

Target Configuration

Very thin target with clean and high intensity beam

material	beam intensity (p/spill)	Interaction length(%)	radiation length(%)
С	~1x10 ⁹	0.2%	0.4%
CuX4	~1x10 ⁹	0.05%X4	0.5%X4

Invariant Mass Spectrum of e+e-

we examine how well the data is reproduced with known hadronic sources & combinatorial background

On the Fit

resonance

- relativistic Breit-Wigner shape
- experimental effect estimated through Geant4 simulation
 energy loss including Bremsstrahlung, multiple
 scattering, tracking performance and detector acceptance.

background

- combinatorial background obtained by mixed events.

fit parameters

– relative abundances of mesons (ρ,ω,ϕ), η Dalitz and background are obtained by the fitting.

MC simulation : Mass Resolution

- mass resolution and scale are examined for observed $K_s \rightarrow \pi^+\pi^-$ decays.
- resolution and centroid are consistent with the detector simulation using Geant4.
- mass resolution for ω/ϕ are estimated to be 8.0/10.7 MeV/c²

 $K_s \rightarrow \pi^+ \pi^-$

 $m = \frac{497.1 \pm 0.2 \text{ MeV/c}^2}{(\text{MC}:497.0 \pm 0.1 \text{ MeV/c}^2)}$

- $\sigma = 3.9 \pm 0.4 \text{ MeV/c}^2$
 - (MC: $3.5 \pm 0.1 \text{ MeV/c}^2$)

MC simulation : Energy Loss

6

07

0.9

 $[GeV/c^2]$

Invariant Mass Spectrum of e⁺e⁻

Invariant Mass Spectrum of e⁺e⁻

the region 0.60-0.76GeV/c² is excluded from the fit.

the excess over the known hadronic sources on the low mass side of ω peak has been observed.

Invariant Mass Spectrum of e+e- (background subtracted)

It is pretty much surprising because the ρ/ω is known to be unity in pp interactions (Blobel et. al, PLB48('74)73)

Discussion

$\rho-\omega$ interference?

$\rho-\omega$ interference?

- •data was fitted with the interfering $\rho-\omega$ shape for various $\sigma_{\rho}/\sigma_{\omega}$ and angle
- •best case
- $\checkmark \sigma_{\rho} / \sigma_{\omega}$ =0.6, θ =0.8rad
- √ χ 2=285/163(C) ,242/163(Cu)
- ✓probability<1x10⁻⁴

no solution to reproduce the excess

Toy Model Calculation

- generated at surface of forward hemisphere of target nucleus
 - $\alpha_{\omega} = 0.68 \pm 0.04$
 - $(\alpha_{\phi} = 0.93 \pm 0.15)$
 - decay inside nucleus:

	С	Cu
ρ	52%	66%
ω	5%	10%

 $\rho/\omega/\phi$

р

e

е

- density distribution Woods-Saxon
- mass spectrum: relativistic Breit-Wigner Shape
- pole mass: $\frac{m^*}{m} = 1 k \frac{\rho}{\rho^0}$ (Hatsuda-Lee formula)
- no width modification

Model Calculation With the formula : $m^*/m=1-k\rho/\rho_0$

 $k = 0.08 \rightarrow$ seems to fit the data

pmeson spectrum for various k m*/m=1-k ρ/ρ_0

140 120 100 80 60 40 20 0.0 shift parameter 0.1 0.2 0.3 08 0.6 0.4invariant mass

Shift Parameter k VS ρ spectrum

- □ We fit the data to determine the shift parameter k
- □ C/Cu data are fitted simultaneously
- □ fit parameters:
 - shift parameter k
 - relative abundances of ϕ , ω and background
 - ρ/ω ratio

Fit Results of Model Calculation

the tendency of the excess for C and Cu are well reproduced by the model including the mass modification.

Confidence ellipsoids for k m*/m = 1 – k ρ/ρ_0

- **I** production ratio ρ/ω VS shift parameter k
- Best-Fit value is
- $k = 0.092 \pm 0.002$
- ρ/ω = 0.7 \pm 0.1 (C)
 - 0.9±0.2 (Cu)

→ mass of ρ / ω meson decrease 9% at normal nuclear density.

shift paramter k

Invariant spectra of $\phi \rightarrow e^+e^-$

Summary

- KEK PS-E325 experiment measured e⁺e⁻ pairs in 12GeV p+A reactions to investigate invariant mass of vector mesons decaying in nuclear matter.
- We have observed the excess over the known hadronic sources at low-mass side of ω. Obtained ρ / ω ratio indicates that the excess is mainly due to the modification of ρ mesons.
- $\rho \omega$ interference does not explain our data.
- Model calculation based on the mass modification reproduced the tendency of the data. The fit result shows that the mass of ρ/ω decreases by 9% at the normal nuclear density.