## Measurement for $e^{+} e^{-S p e c t r a l ~ M o d i f i c a t i o n ~ o f ~} \rho / \omega$ mesons in $12 G e V p+A$ reactions

 M. Naruki(RIKEN) for the KEK-PS E325 collaboration
irst, the fit was done for the all mass region, but the fit could not reproduce our data. The fitting $\chi^{2 / \text { dof was }}$ 371/162 and 316/162

for the carbon and copper target, respectively. Then we made the fit for the data excluding the low-mass side of omega $\rightarrow$

the excess over the known hadronic sources on the low mass side of $\omega$ peak has been observed.
after background subtracted

$\mathrm{N} \rho \mathrm{N} \omega=0.0 \pm 0.02$ (stat.) $\pm 0.2$ (sys.) $\quad 0.0 \pm 0.04$ (stat.) $\pm 0.3$ (sys.) It is pretty much surprising because the $\rho / \omega$ is known to be unity in pp reactions

the tendency of the excess for C and Cu are well reproduced by the model including the mass modification.
$\rightarrow$ mass of $\rho / \omega$ meson decrease 9\% at normal nuclear density.

## $\rho-\omega$ interference

$\rho-\omega$ interfering

## resonance shape

$F^{2}=\left|F_{\rho}+R F_{\omega}\right|^{2}, \quad F_{V}=\frac{1}{m^{2}-m_{v}{ }^{2}+i m \Gamma_{v}}$
$R=\frac{\langle e e \mid \omega\rangle\langle\omega \mid p A\rangle}{\langle e e \mid \rho\rangle\langle\rho \mid p A\rangle}=\sqrt{\frac{m_{\omega} \Gamma_{\omega \rightarrow e}}{m \Gamma^{2}}} \sqrt{\frac{\sigma_{\omega}}{\sigma_{\rho}} e^{i \theta}}$

fitting $\chi^{2}$ vs interference angle
-data was fitted with the interfering $\rho-\omega$ shape for various $\sigma_{\rho} / \sigma_{\omega}$ and angle
-best case
$\checkmark \sigma_{\beta} / \sigma_{\omega}=0.6, \theta=0.8 \mathrm{rad}$ $\chi_{2}=285 / 163(\mathrm{C}), 242 / 163(\mathrm{Cu})$ $\checkmark$ probability<1×10-4

## C Conclusion

■ KEK PS-E325 experiment measured $\mathrm{e}^{+} \mathrm{e}^{-}$pairs in $12 \mathrm{GeV} \mathrm{p}+\mathrm{A}$ reactions to investigate invariant mass of vector mesons decaying in nuclear matter.
■ We have observed the excess over the known hadronic sources at low-mass side of $\omega$. Obtained $\rho$ / $\omega$ ratio indicates that the excess is mainly due to the modification of $\rho$ mesons.
$\square \rho-\omega$ interference did not explain our data.
Model calculation based on the mass modification reproduced the tendency of the data. The fit result shows that the mass of $\rho / \omega$ decreases by $9 \%$ at the normal nuclear density

