Study of vector meson modification

in nuclear matter at KEK-PS

Kyoto Univ., KEK $_{\mathrm{A}}$, RIKEN ${ }_{\mathrm{B}}$, CNS Univ. of Tokyo $_{\mathrm{C}}$, ICEPP Univ. of Tokyo ${ }_{\mathrm{D}}$, Tohoku Univ. ${ }_{\text {E }}$
F.Sakuma, J.Chiba ${ }_{A}$, H.En'yo $_{B}$, Y.Fukao, H.Funahashi, H.Hamagaki ${ }_{C}$, M.leiri ${ }_{A}$, M. Ishino $_{D}$, H.Kanda ${ }_{\mathrm{E}}$, M.Kitaguchi, S.Mihara ${ }_{\mathrm{D}}$, K.Miwa, T.Miyashita, T.Murakami, R.Muto , M.Nakura, M.Naruki ${ }_{\mathrm{B}}$, K.Ozawa $_{\mathrm{C}}$, O.Sasaki $_{\mathrm{A}}$, M.Sekimoto $_{\mathrm{A}}$, T.Tabaru $_{\mathrm{B}}$, K.H.Tanaka ${ }_{\mathrm{A}}$, M.Togawa, S.Yamada, S.Yokkaichi ${ }_{B}$, Y.Yoshimura

-Physics motivation

-E325 Experiment
-Results of data analysis
$\bullet \rho / \omega \rightarrow$ e $^{+} e^{-}$spectra

- $\phi \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$spectra
- $\phi \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$spectra
- nuclear mass-number dependences of $\phi \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \& \phi \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}$
- Summary

Physics Motivation

Quark Mass

chiral symmetry restoration

$$
\begin{gathered}
\text { bare mass } \\
\mathrm{m}_{\mathrm{u}} \fallingdotseq \mathrm{~m}_{\mathrm{d}} \fallingdotseq 5 \mathrm{MeV} / \mathrm{c}^{2} \\
\mathrm{~m}_{\mathrm{s}} \fallingdotseq 150 \mathrm{MeV} / \mathrm{c}^{2}
\end{gathered}
$$

effective mass in QCD vacuum $\mathrm{m}_{\mathrm{u}} \doteqdot \mathrm{m}_{\mathrm{d}} \doteqdot 300 \mathrm{MeV} / \mathrm{c}^{2}$ $\mathrm{m}_{\mathrm{s}} \doteqdot 500 \mathrm{MeV} / \mathrm{c}^{2}$

How we can detect such a quark mass change?

 at very high temperature or density, the chiral symmetry is expected to restoreeven at normal nuclear density, the chiral symmetry is expected to restore partially

Vector Meson Modification

dropping mass

- Brown \& Rho ('91)

$$
\mathrm{m}^{*} / \mathrm{m}=0.8\left(\rho=\rho_{0}\right)
$$

- Hatsuda \& Lee ('92) $m^{*} / m=1-0.16 \rho / \rho_{0}$ for ρ / ω $\mathrm{m}^{*} / \mathrm{m}=1-0.03 \rho / \rho_{0}$ for ϕ
- Muroya, Nakamura \& Nonaka ('03) Lattice Calc.

width broadening

- Klingl, Kaiser \& Weise ('97\&98) $1 \mathrm{GeV}>$ for $\rho, 45 \mathrm{MeV}$ for $\phi\left(\rho=\rho_{0}\right)$
- Oset \& Ramos ('01)

22 MeV for $\phi\left(\rho=\rho_{0}\right)$

- Cabrera \& Vicente ('03)

33 MeV for $\phi\left(\rho=\rho_{0}\right)$

Vector Meson, $\rho / \omega / \phi$

ρ / ω meson

-mass decreases

$$
\mathrm{M}(\rho) / \mathrm{M}(\rho=0)
$$

$$
16 \% \rightarrow 130 \mathrm{MeV} / \mathrm{c}^{2}
$$

- large production cross-section - cannot distinguish ρ \& ω

ϕ meson

-mass decreases

$$
2 \sim 4 \% \rightarrow 20-40 \mathrm{MeV} / \mathrm{c}^{2}
$$

-small production cross-section
-narrow decay width ($\Gamma=4.3 \mathrm{MeV} / c^{2}$), no other resonance nearby
\Rightarrow sensitive to the mass spectrum change

Expected Invariant Mass Spectra in $\mathrm{e}^{+} \mathrm{e}^{-}$

-small FSI in $\mathrm{e}^{+} \mathrm{e}^{-}$decay channel - double peak (or tail-like) structure $m * / m=1-0.16 \rho / \rho_{0}$
>second peak is made by inside-nucleus decay

outside decay inside decay
$>$ depends on the nuclear size \& meson velocity
>enhanced for larger nuclei \& slower meson

Vector Meson Measurements

Hot / Cold

-CERES@CERN-SPS ('93)

$-e^{+} e^{-}$

- anomaly at lower region of ρ in $A+A$, not in $\mathrm{p}+\mathrm{A}$
-STAR@BNL-RHIC ('04)
$-\rho \rightarrow \pi^{+} \pi^{-}$
- mass shift in $p+p$ \& $A+A$ peripheral
-CBELSAITAPS@ELSA ('05)
$-\omega \rightarrow \pi^{0} \gamma(\rightarrow \gamma \gamma \gamma)$
- anomaly in $\gamma+\mathrm{Nb}$, not in $\gamma+\mathrm{p}$
- NA60@CERN-SPS ('06)
$-\rho \rightarrow \mu^{+} \mu^{-}$
- width broadening, no mass shift in $\mathrm{In}+\mathrm{In}$

KEK-PS E325 Experiment

Measurements

Invariant Mass of $\mathrm{e}^{+} \mathrm{e}^{-}, \mathrm{K}^{+} \mathrm{K}^{-}$
in $12 \mathrm{GeV} \mathrm{p}+\mathrm{A} \rightarrow \rho, \omega, \phi+\mathrm{X}$ reactions slowly moving vector mesons

$$
\left(\mathrm{p}_{\mathrm{lab}} \sim 2 \mathrm{GeV} / \mathrm{c}\right)
$$

large probability
to decay inside a nucleus

Beam

Primary proton beam
(~10\%/spill/1.8s)

Target

Very thin targets
e.g. 0.4\% radiation length \&
0.2% interaction length for C-target

History of E325
'93 proposed
'96 construction start
\checkmark NIM, A457, 581 (2001).
\checkmark NIM, A516, 390 (2004).
'97 first $\mathrm{K}^{+} \mathrm{K}^{-}$data
'98 first $\mathrm{e}^{+} \mathrm{e}^{-}$data
\checkmark PRL, 86, 5019 (2001).
'99~'02
x100 statistics in $\mathrm{e}^{+} \mathrm{e}^{-}$ \checkmark PRL, 96, 092301 (2006).
\checkmark nucl-ex/0511019
\checkmark nucl-ex/0603013
x10 statistics in $\mathrm{K}^{+} \mathrm{K}^{-}$ Vnucl-ex/0606029
'02 completed

Detector Setup

M.Sekimoto et al., NIM, A516, 390 (2004).

Observed Invariant Mass Spectra

Result of $\rho / \omega \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$

M.Naruki et al., PRL, 96, 092301 (2006).

$\mathrm{e}^{+} \mathrm{e}^{-}$Invariant Mass Spectra

- from 2002 run data ($\sim 70 \%$ of total data)
-C \& Cu targets
-acceptance uncorrected
$\bullet \mathrm{M}<0.2 \mathrm{GeV} / \mathrm{c}^{2}$ is suppressed by the detector acceptance

Fitting with known sources

-resonance

$-\rho / \omega / \phi \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}, \omega \rightarrow \pi^{0} \mathrm{e}^{+} \mathrm{e}^{-}, \eta \rightarrow \gamma \mathrm{e}^{+} \mathrm{e}^{-}$

- relativistic Breit-Wigner shape (with internal radiative corrections)
- nuclear cascade code JAM gives momentum distributions
- experimental effects are estimated through the Geant4 simulation (multiple scattering, energy loss, external bremsstrahlung, chamber resolution, detector acceptance, etc.)
-background
- combinatorial background obtained by the event mixing method

-fit parameter

- relative abundance of these components is determined by the fitting

Fitting Results

events[/ $10 \mathrm{MeV} / \mathrm{c}^{2}$]

events[/ $10 \mathrm{MeV} / \mathrm{c}^{2}$]

the excess over the known hadronic sources on the low mass side of ω peak has been observed.
the region $0.60-0.76 \mathrm{GeV} / \mathrm{c}^{2}$ is excluded from the fit, because the fit including this region results in failure at 99.9\% C.L..

Fitting Results (BG subtracted)

ρ / ω ratios are consistent with zero!
$\rho / \omega=0.0 \pm 0.03$ (stat.) ± 0.09 (sys.) 0.0 ± 0.04 (stat.) ± 0.21 (sys.)
$\rho / \omega=1.0 \pm 0.2$ in former experiment ($p+p, 1974$)
\rightarrow the origin of the excess is modified ρ mesons

Toy Model Calculation

- pole mass: $\mathbf{m} / \mathbf{m}=1-k \rho / \rho_{0}$ (Hatsuda-Lee formula)
- generated at surface of incident hemisphere of target nucleus
- $\alpha_{\omega} \sim 2 / 3$ [nucl-ex/0603013]
- decay inside a nucleus:

	C	Cu
ρ	52%	66%
ω	5%	10%

Cu
$\mathrm{r}=4.1 \mathrm{fm}$
C
$r=2.3 \mathrm{fm}$

- nuclear density distribution : Woods-Saxon
- mass spectrum: relativistic Breit-Wigner Shape
- no width modification

Fitting Results by the Toy Model m*/m =1-0.092 ρ / ρ_{0}

the excesses for C and Cu are well reproduced by the model including the mass modification.

Result of $\phi \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$

R.Muto et al., nucl-ex/0511019

$\phi \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$Invariant Mass Spectra

- from 2001 \& 2002 run data
-C \& Cu targets
- acceptance uncorrected
- fit with
- simulated mass shape of ϕ (evaluated as same as ρ / ω)
- polynomial curve background

\rightarrow examine the mass shape as a function of $\beta \gamma(=\mathrm{p} / \mathrm{m})$ (anomaly could be enhanced for slowly moving mesons)

Fitting Results

Amount of Excess

A significant enhancement is seen in the Cu data, in $\beta \gamma<1.25$
\rightarrow the excess is attributed to the ϕ mesons which decay inside a nucleus and are modified
To evaluate the amount the excess $\mathrm{N}_{\text {excess }}$, fit again excluding the excess region ($0.95 \sim 1.01 \mathrm{GeV} / \mathrm{c}^{2}$) and integrate the excess area.

Toy Model Calculation

Toy model like ρ / ω case, except for

- pole mass: $m * / m=1-k_{1} \rho / \rho_{0}$ (Hatsuda-Lee formula)
- width broadening: $\Gamma^{*} / \Gamma=1+\mathrm{k}_{2} \rho / \rho_{0}$ (no theoretical basis)
to increase the decay probability
- e+e- branching ratio is not changed in a nucleus

$$
\Gamma_{\mathrm{e}+\mathrm{e}}^{*} / \Gamma_{\mathrm{tot}}^{*}=\Gamma_{\mathrm{e}+\mathrm{e}} / / \Gamma_{\mathrm{tot}}
$$

- uniformly generated in target nucleus
- $\alpha_{\phi} \sim 1$ [nucl-ex/0603013]
- decay inside a nucleus (for $\beta \gamma<1.25$):

	C	Cu
ϕ	3%	6%

Fitting Results by the Toy Model

 $\mathbf{m}^{*} / \mathbf{m}=1-0.04 \rho / \rho_{0}, \Gamma^{*} / \Gamma=1+2 \rho / \rho_{0}$
well reproduce the data, even slow/Cu

Result of $\phi \rightarrow \mathbf{K}^{+} \mathbf{K}^{-}$

F.Sakuma et al., nucl-ex/0606029

$\phi \rightarrow \mathrm{K}^{+} \mathrm{K} \cdot$ Invariant Mass Spectra

- from 2001 run data
-C \& Cu targets
- acceptance uncorrected
- fit with
- simulated mass shape of ϕ (evaluated as same as ρ / ω)
- combinatorial background obtained by the event mixing method
\rightarrow examine the mass shape as a function of $\beta \gamma$

Fitting Results

$\beta \gamma<1.7$ (Slow) $\quad 1.7<\beta \gamma<2.2$

$2.2<\beta \gamma$ (Fast)

Mass-spectrum changes are NOT statistically significant However, impossible to compare $\phi \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$with $\phi \rightarrow \mathrm{K}^{+} \mathrm{K}$, directly

Kinematical Distributions of observed ϕ

-the detector acceptance is different between $\mathrm{e}+\mathrm{e}$ - and $\mathrm{K}^{+} \mathrm{K}^{-}$

- very limited statistics for $\phi \rightarrow \mathrm{K}^{+} \mathrm{K}$ in $\beta \gamma<1.25$ where the modification is observed in $\phi \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$
the histograms for $\phi \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$ are scaled by a factor ~ 3

Result of nuclear

 mass-number dependences of $\phi \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \& \phi \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}$
F.Sakuma et al., nucl-ex/0606029

Vector Meson, ϕ

-mass decreases
$2 \sim 4 \% \rightarrow 20-40 \mathrm{MeV} / \mathrm{c}^{2}$

- narrow decay width ($\Gamma=4.3 \mathrm{MeV} / \mathrm{c}^{2}$)
\Rightarrow sensitive to the mass spectrum change
small decay Q value
$\left(\mathrm{Q}_{\mathrm{K}+\mathrm{K}}=32 \mathrm{MeV} / \mathrm{c}^{2}\right.$)
\Rightarrow the branching ratio is sensitive to ϕ or K modification

simple example
- ϕ mass decreases
$\rightarrow \Gamma_{\phi \rightarrow K+K-}$ becomes small
$\square \mathrm{K}$ mass decreases
$\rightarrow \Gamma_{\phi \rightarrow K+K-}$ becomes large

$\Gamma_{\phi \rightarrow \mathrm{K}+\mathrm{K}} / \Gamma_{\phi \rightarrow \mathrm{e}^{-\mathrm{e}}}$ and Nuclear Mass-Number

Dependence α

$-\Gamma_{\phi \rightarrow K+K} / \Gamma_{\phi \rightarrow+e^{-}}$increases in a nucleus $\rightarrow \mathrm{N}_{\phi \rightarrow K+K_{-}} / \mathrm{N}_{\phi \rightarrow \mathrm{e}^{+e-}}$ becomes large

- The lager modification is expected in the larger nucleus

$$
\sigma(A)=\sigma(A=1) \times A^{\alpha}
$$

$$
\begin{array}{rlr}
\Delta \alpha & =\alpha_{\phi \rightarrow K^{+} K^{-}}-\alpha_{\phi \rightarrow e^{+} e^{-}} & \left(\mathrm{A}_{1}>\mathrm{A}_{2}\right) \\
& =\ln \left[\frac{N_{\phi \rightarrow K^{+}+K^{-}}\left(A_{1}\right)}{N_{\phi \rightarrow e^{+} e^{-}}\left(A_{1}\right)} / \frac{N_{\phi \rightarrow K^{+} K^{-}}\left(A_{2}\right)}{N_{\phi \rightarrow e^{+} e^{-}}\left(A_{2}\right)}\right] / \ln \left(A_{1} / A_{2}\right)
\end{array}
$$

- $\alpha_{\phi \rightarrow K+\kappa \text {. }}$ becomes larger than $\alpha_{\phi \rightarrow \text { e+e- }}$ - The difference of α is expected to be enhanced in slowly moving ϕ mesons

Results of Nuclear Mass-Number Dependence α

$$
\Delta \alpha=\underset{K^{+} \mathrm{K}^{-}}{\bigcirc-}-\square
$$

possible modification of the decay widths is discussed
$\alpha_{\phi \rightarrow K+K-}$ and $\alpha_{\phi \rightarrow e+e-}$ are consistent

Discussion on $\Gamma_{\phi \rightarrow \mathrm{K}+\mathrm{K}^{-}}$and $\Gamma_{\phi \rightarrow \mathrm{e}+\mathrm{e}^{-}}$

$$
\Gamma_{\phi}^{*} / \Gamma_{\phi}^{0}=1+k_{\text {tot }}\left(\rho / \rho_{0}\right),
$$

$$
\Gamma_{\phi \rightarrow K^{+} K^{-}}^{*} / \Gamma_{\phi \rightarrow K^{+} K^{-}}^{0}=1+k_{K}\left(\rho / \rho_{0}\right),
$$

$$
\Gamma_{\phi \rightarrow e^{+} e}^{*} / \Gamma_{\phi \rightarrow e^{+} e^{*}}^{0}=1+k_{e}\left(\rho / \rho_{0}\right)
$$

We expect $\mathrm{k}_{\text {tot }} \simeq \mathrm{k}_{\mathrm{K}}$ since the ϕ meson mainly decays into KK as long as such decays are kinematically allowed.

(1)The values of expected $\Delta \alpha$ are obtained by the MC.

- ϕ mesons are uniformly produced in a nucleus and decayed according to the values of k_{k} and $k_{\text {e }}$.
(2) The measured $\Delta \alpha$ provides constraints on k_{K} and k_{e}.

Discussion on $\Gamma_{\phi \rightarrow K+K^{-}}$and $\Gamma_{\phi \rightarrow e^{+}-}$

(3) The constraint on k_{K} is obtained from the $\mathrm{K}^{+} \mathrm{K}^{-}$spectra.

- In the $\mathrm{K}^{+} \mathrm{K}^{-}$spectra, we fit again excluding the region $0.987\left(=2 \mathrm{~m}_{\mathrm{k}}\right) \sim 1.01 \mathrm{GeV} / \mathrm{c}^{2}$.
- We obtain a surplus over the ϕ peak and BG.
- From the MC, we estimate the ratio of the number of ϕ mesons decayed inside to outside $\mathrm{N}_{\text {in }} / \mathrm{N}_{\text {out }}$ (inside = the half-density radius of the Woods-Saxon dist.).
- When the surpluses are assumed as the ϕ-meson decayed inside a nucleus, we obtain the constraint on k_{K} by comparing $N_{\text {surplus }} / N_{\phi}$ with $N_{\text {in }} / N_{\text {out }}$.

$\mathrm{N}_{\text {surplus }} / \mathrm{N}_{\phi}=0.044+/-0.037+/-0.058$ (C) $0.076+/-0.025+/-0.043(\mathrm{Cu})$

$k_{K}=2.1+\mid-1.2+l-2.0(C \& C u)$

Discussion on $\Gamma_{\phi \rightarrow K+K^{-}}$and $\Gamma_{\phi \rightarrow e^{+}-}$

$$
\overline{\Gamma_{\phi}^{*} / \Gamma_{\phi}^{0}=1+k_{\mathrm{tot}}\left(\rho / \rho_{0}\right), ~}
$$

$$
\Gamma_{\phi \rightarrow K^{+} K^{-}}^{*} / \Gamma_{\phi \rightarrow K^{+} K^{-}}^{0}=1+k_{K}\left(\rho / \rho_{0}\right),
$$

$$
\Gamma_{\phi \rightarrow e^{+} e}^{*} / \Gamma_{\phi \rightarrow e^{+} e^{0}}^{0}=1+k_{e}\left(\rho / \rho_{0}\right)
$$

$$
\mathrm{k}_{\mathrm{tot}} \simeq \mathrm{k}_{\mathrm{K}}
$$

(4) Limits on the in-medium decay widths are obtained.

- We renormalize the PDF eliminating an unphysical region corresponding to $\Gamma^{*} / \Gamma<0$, and obtain the 90% confidence limits.
the first experimental limits assigned to the in-medium broadening of the partial decay widths

Summary

- KEK PS-E325 measured $\mathrm{e}^{+} \mathrm{e}^{-}$and $\mathrm{K}^{+} \mathrm{K}^{-}$invariant mass distributions in 12 GeV p+A reactions.
-The significant excesses at the low-mass side of $\omega \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$and $\phi \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$peak have been observed.
\rightarrow These excesses are well reproduced by the toy model calculations which take Hatsuda-Lee prediction into account.
- Mass spectrum changes are not statistically significant in the $\mathrm{K}^{+} \mathrm{K}^{-}$invariant mass distributions.
\rightarrow Our statistics in the $\mathrm{K}^{+} \mathrm{K}^{-}$decay mode are very limited in the $\beta \gamma$ region in which we see the excess in the $\mathrm{e}^{+} \mathrm{e}^{-}$mode.
- The observed nuclear mass-number dependences of $\phi \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$ and $\phi \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$are consistent.
\rightarrow We have obtained limits on the in-medium decay width broadenings for both the $\phi \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$and $\phi \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$decay channels.

Backup

Contours for ρ / ω and k

- C and Cu data are simultaneously fitted.
- free parameters
- production ratio ρ / ω
- shift parameter k

■ Best-Fit values are

$$
\begin{aligned}
k= & 0.092 \pm 0.002 \\
\rho / \omega= & 0.7 \pm 0.1(\mathrm{C}) \\
& 0.9 \pm 0.2(\mathrm{Cu})
\end{aligned}
$$

mass of ρ / ω meson decreases by 9% at normal nuclear density.

Contours for k_{1} and k_{2} of $\phi \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$

Pole Mass Shift $\mathrm{M}^{*} / \mathrm{M}=1-\mathrm{k}_{1} \rho / \rho_{0}$ Width Broadening $\Gamma * / \Gamma=1+\mathrm{k}_{2} \rho / \rho_{0}$

C and Cu data are simultaneously fitted.

■ free parameters

- parameter \mathbf{k}_{1} \& $\mathbf{k}_{\mathbf{2}}$

Best-Fit values are
$\mathrm{k}_{1}=0.034 \pm 0.007$
$k_{2}=2.6 \pm 1.3$

Acceptance Correction for α

assumption : $\alpha_{\phi \rightarrow \text { e+e }}$ is linearly dependent on the $y-p_{T}$ plane in
 our detector acceptance
values of

divide $\mathbf{e}^{+} e^{-}$

fit the data with the linear function

