### Study of vector meson modification

### in nuclear matter at KEK-PS

**<u>Kyoto Univ.</u>**, KEK<sub>A</sub>, RIKEN<sub>B</sub>, CNS Univ. of Tokyo<sub>C</sub>, ICEPP Univ. of Tokyo<sub>D</sub>,

Tohoku Univ.<sub>E</sub>

F.Sakuma, J.Chiba<sub>A</sub>, H.En'yo<sub>B</sub>, Y.Fukao, H.Funahashi, H.Hamagaki<sub>C</sub>, M.Ieiri<sub>A</sub>, M.Ishino<sub>D</sub>, H.Kanda<sub>E</sub>, M.Kitaguchi, S.Mihara<sub>D</sub>, K.Miwa, T.Miyashita, T.Murakami, R.Muto<sub>B</sub>, M.Nakura, M.Naruki<sub>B</sub>, K.Ozawa<sub>C</sub>, O.Sasaki<sub>A</sub>, M.Sekimoto<sub>A</sub>, T.Tabaru<sub>B</sub>, K.H.Tanaka<sub>A</sub>, M.Togawa, S.Yamada, S.Yokkaichi<sub>B</sub>, Y.Yoshimura



- •E325 Experiment
- Results of data analysis
  - • $\rho/\omega \rightarrow e^+e^-$  spectra

  - $\phi \rightarrow K^+K^-$  spectra



## **Physics Motivation**



#### How we can detect such a quark mass change?

at very high temperature or density, the chiral symmetry is expected to restore

even at normal nuclear density, the chiral symmetry is expected to restore partially



## **Vector Meson Modification**

#### dropping mass

 Brown & Rho ('91) m\*/m=0.8 (ρ=ρ<sub>0</sub>)
 Hatsuda & Lee ('92) m\*/m=1-0.16ρ/ρ<sub>0</sub> for ρ/ω m\*/m=1-0.03ρ/ρ<sub>0</sub> for φ
 Muroya, Nakamura & Nonaka ('03) Lattice Calc.

### <u>width broadening</u>

Klingl, Kaiser & Weise ('97&98) 1GeV> for ρ, 45MeV for φ (ρ=ρ<sub>0</sub>)
Oset & Ramos ('01) 22MeV for φ (ρ=ρ<sub>0</sub>)
Cabrera & Vicente ('03) 33MeV for φ (ρ=ρ<sub>0</sub>)





## Vector Meson, $\rho/\omega/\phi$



### Expected Invariant Mass Spectra in e<sup>+</sup>e<sup>-</sup>

ρ+ω

## small FSI in e<sup>+</sup>e<sup>-</sup> decay channel double peak (or tail-like) structure



## **Vector Meson Measurements**

Hot / Cold

### •CERES@CERN-SPS ('93)

– e⁺e⁻

– anomaly at lower region of  $\rho$  in A+A, not in p+A

### •STAR@BNL-RHIC ('04)

 $-\rho \rightarrow \pi^+\pi^-$ 

mass shift in p+p & A+A peripheral

### •CBELSA/TAPS@ELSA ('05)

- $-\omega \rightarrow \pi^0 \gamma (\rightarrow \gamma \gamma \gamma)$
- anomaly in  $\gamma$ +Nb, not in  $\gamma$ +p

### •NA60@CERN-SPS ('06)

- $-\rho \rightarrow \mu^+ \mu^-$
- width broadening, no mass shift in In+In



## **KEK-PS E325 Experiment**

Measurements Invariant Mass of e<sup>+</sup>e<sup>-</sup>, K<sup>+</sup>K<sup>-</sup> in 12GeV p+A→ρ,ω,φ+X reactions slowly moving vector mesons  $(p_{lab}~2GeV/c)$ large probability to decay inside a nucleus

#### <u>Beam</u>

Primary proton beam (~10<sup>9</sup>/spill/1.8s)

### <u>Target</u>

Very thin targets e.g. 0.4% radiation length & 0.2% interaction length for C-target

### History of E325

'93 proposed '96 construction start ✓ NIM, A457, 581 (2001). ✓ NIM, A516, 390 (2004). **'97** first K<sup>+</sup>K<sup>-</sup> data '98 first e⁺e⁻ data ✓ PRL, 86, 5019 (2001). **'99~'02** x100 statistics in e<sup>+</sup>e<sup>-</sup> ✓ PRL, 96, 092301 (2006). ✓ nucl-ex/0511019 ✓ nucl-ex/0603013 x10 statistics in K<sup>+</sup>K<sup>-</sup> ✓ nucl-ex/0606029 '02 completed

### **Detector Setup**

M.Sekimoto et al., NIM, A516, 390 (2004).



### **Observed Invariant Mass Spectra**



## **Result of** $\rho/\omega \rightarrow e^+e^-$

### M.Naruki et al., PRL, 96, 092301 (2006).

### e<sup>+</sup>e<sup>-</sup> Invariant Mass Spectra

- from 2002 run data(~70% of total data)
- •C & Cu targets
- •acceptance uncorrected
- •M<0.2GeV/c<sup>2</sup> is suppressed by the detector acceptance



→ fit the spectra with known sources

## Fitting with known sources

### •resonance

- $-\rho/\omega/\phi \rightarrow e^+e^-, \omega \rightarrow \pi^0 e^+e^-, \eta \rightarrow \gamma e^+e^-$
- relativistic Breit-Wigner shape (with internal radiative corrections)
- nuclear cascade code JAM gives momentum distributions
- experimental effects are estimated through the Geant4 simulation (multiple scattering, energy loss, external bremsstrahlung, chamber resolution,

detector acceptance, etc.)

### •background

 – combinatorial background obtained by the event mixing method

### •fit parameter

 relative abundance of these components is determined by the fitting



## **Fitting Results**



the excess over the known hadronic sources on the low mass side of ω peak has been observed.

the region **0.60-0.76GeV/c<sup>2</sup> is excluded** from the fit, because the fit including this region results in failure at 99.9% C.L.. <sup>13</sup>

### Fitting Results (BG subtracted)



 $\rho/\omega$  ratios are consistent with zero !  $\rho/\omega = 0.0 \pm 0.03$ (stat.) $\pm 0.09$ (sys.)  $0.0 \pm 0.04$ (stat.) $\pm 0.21$ (sys.)

 $\rho/\omega$ =1.0±0.2 in former experiment (p+p, 1974) → the origin of the excess is modified  $\rho$  mesons

## **Toy Model Calculation**

- pole mass:  $m^*/m = 1 k\rho/\rho_0$  (Hatsuda-Lee formula)
- generated at surface of incident hemisphere of target nucleus
  - α<sub>ω</sub>~2/3 [nucl-ex/0603013]





- nuclear density distribution : Woods-Saxon
- mass spectrum: relativistic Breit-Wigner Shape
- no width modification

#### Fitting Results by the Toy Model $m^*/m = 1 - 0.092 \rho/\rho_0$ events[/10 MeV/c<sup>2</sup>] events[/10 MeV/c<sup>2</sup>] $\rho/\omega = 0.7 \pm 0.1$ $\rho/\omega = 0.9 \pm 0.2$ 1200 1000 Cu 1000 800 fit result fit result 800 $\cdots \rho \rightarrow e^+e^ \cdots \rho \rightarrow e^+e^-$ 600 $\omega \rightarrow e^+e^ \omega \rightarrow e^+e^-$ 600 400 400 200 200 0. 0.7 0.8 0.6 $[GeV/c^2]$ 0.6 0.7 0.8 0.9 $[GeV/c^2]$ the excesses for C and Cu are well reproduced

by the model including the mass modification.

## Result of $\phi \rightarrow e^+e^-$

R.Muto et al., nucl-ex/0511019

### $\phi \rightarrow e^+e^-$ Invariant Mass Spectra

- •from 2001 & 2002 run data
- •C & Cu targets
- acceptance uncorrected

•fit with

– simulated mass shape of φ
 (evaluated as same as ρ/ω)
 – polynomial curve background



## $\rightarrow$ examine the mass shape as a function of βγ (=p/m) (anomaly could be enhanced for slowly moving mesons)



**Rejected at 99% confidence level** 

### **Amount of Excess**

### A significant enhancement is seen in the Cu data, in $\beta\gamma$ <1.25

#### 

To evaluate the amount the excess  $N_{excess}$ , fit again excluding the excess region (0.95~1.01GeV/c<sup>2</sup>) and integrate the excess area.



20

## **Toy Model Calculation**

### Toy model like $\rho/\omega$ case, except for

- pole mass:  $m^*/m = 1 k_1 \rho / \rho_0$  (Hatsuda-Lee formula)
- width broadening:  $\Gamma^* / \Gamma = 1 + k_2 \rho / \rho_0$ (no theoretical basis)
  - e+e- branching ratio is not changed

 $\Gamma_{e+e}^*/\Gamma_{tot}^*=\Gamma_{e+e}^*/\Gamma_{tot}^*$ 

- uniformly generated in target nucleus
  - $\alpha_{\phi} \sim 1$  [nucl-ex/0603013]
  - decay inside a nucleus (for  $\beta\gamma$ <1.25):



to increase the decay probability in a nucleus





well reproduce the data, even slow/Cu

## Result of $\phi \rightarrow K^+K^-$

### F.Sakuma et al., nucl-ex/0606029

## $\phi \rightarrow K^+K^-$ Invariant Mass Spectra

counts/4MeV/c<sup>2</sup> from 2001 run data •C & Cu targets 150 acceptance uncorrected 100 •fit with 50 - simulated mass shape of  $\phi$ (evaluated as same as  $\rho/\omega$ ) – combinatorial background obtained by the event mixing method

### $\rightarrow$ examine the mass shape as a function of $\beta\gamma$



**Mass-spectrum changes are NOT statistically significant** However, impossible to compare  $\phi \rightarrow e^+e^-$  with  $\phi \rightarrow K^+K^-$ , directly

### Kinematical Distributions of observed $\boldsymbol{\phi}$



the histograms for  $\phi \rightarrow K^+K^$ are scaled by a factor ~3

## **Result of nuclear** mass-number dependences of $\phi \rightarrow e^+e^- \& \phi \rightarrow K^+K^-$

F.Sakuma et al., nucl-ex/0606029

## Vector Meson, $\phi$



### $\Gamma_{\phi \rightarrow K+K} / \Gamma_{\phi \rightarrow e^+e^-}$ and Nuclear Mass-Number Dependence $\alpha$



### Results of Nuclear Mass-Number Dependence $\alpha$



### Discussion on $\Gamma_{\phi \rightarrow K+K}$ and $\Gamma_{\phi \rightarrow e+e}$

$$\frac{\Gamma_{\phi}^{*}/\Gamma_{\phi}^{0} = 1 + k_{tot} \left(\rho/\rho_{0}\right),}{\Gamma_{\phi \to K^{+}K^{-}}^{*}/\Gamma_{\phi \to K^{+}K^{-}}^{0} = 1 + k_{K} \left(\rho/\rho_{0}\right),} \\ \Gamma_{\phi \to e^{+}e^{-}}^{*}/\Gamma_{\phi \to e^{+}e^{-}}^{0} = 1 + k_{e} \left(\rho/\rho_{0}\right)$$
We expect  $k_{tot} \simeq k_{K}$  since the  $\phi$  meson mainly decays into KK as long as such decays are kinematically allowed.

#### (1) The values of expected $\Delta \alpha$ are obtained by the MC.

- $-~\phi$  mesons are uniformly produced in a nucleus and decayed according to the values of  $k_{\kappa}$  and  $k_{e}.$
- (2) The measured  $\Delta \alpha$  provides constraints on k<sub>K</sub> and k<sub>e</sub>.

### Discussion on $\Gamma_{\phi \rightarrow K+K^-}$ and $\Gamma_{\phi \rightarrow e^+e^-}$

#### **③** The constraint on $k_{K}$ is obtained from the K<sup>+</sup>K<sup>-</sup> spectra.

- In the K<sup>+</sup>K<sup>-</sup> spectra, we fit again excluding the region  $0.987(=2m_k) \sim 1.01 \text{GeV/c}^2$ .
- We obtain a surplus over the  $\phi$  peak and BG.
- From the MC, we estimate the ratio of the number of  $\phi$  mesons decayed inside to outside N<sub>in</sub>/N<sub>out</sub> (inside = the half-density radius of the Woods-Saxon dist.).
- When the surpluses are assumed as the  $\phi$ -meson decayed inside a nucleus, we obtain the constraint on  $k_K$  by comparing  $N_{surplus}/N_{\phi}$  with  $N_{in}/N_{out}$ .



### Discussion on $\Gamma_{\phi \rightarrow K+K}$ and $\Gamma_{\phi \rightarrow e+e}$



**④**Limits on the in-medium decay widths are obtained.

– We renormalize the PDF eliminating an unphysical region corresponding to  $\Gamma^*/\Gamma$ <0, and obtain the 90% confidence limits.

## the first experimental limits assigned to the in-medium broadening of the partial decay widths

## Summary

- KEK PS-E325 measured e<sup>+</sup>e<sup>-</sup> and K<sup>+</sup>K<sup>-</sup> invariant mass distributions in 12GeV p+A reactions.
- The significant excesses at the low-mass side of  $\omega \rightarrow e^+e^-$  and  $\phi \rightarrow e^+e^-$  peak have been observed.
  - → These excesses are well reproduced by the toy model calculations which take Hatsuda-Lee prediction into account.
- Mass spectrum changes are not statistically significant in the K+K<sup>-</sup> invariant mass distributions.
  - $\rightarrow$  Our statistics in the K<sup>+</sup>K<sup>-</sup> decay mode are very limited in the  $\beta\gamma$  region in which we see the excess in the e<sup>+</sup>e<sup>-</sup> mode.
- The observed nuclear mass-number dependences of  $\phi \rightarrow e^+e^$ and  $\phi \rightarrow K^+K^-$  are consistent.
  - → We have obtained limits on the in-medium decay width **broadenings** for both the  $\phi \rightarrow e^+e^-$  and  $\phi \rightarrow K^+K^-$  decay channels.

34

# Backup

## Contours for $\rho/\omega$ and k

- C and Cu data are simultaneously fitted.
- free parameters
   production ratio ρ/ω
   shift parameter k
- Best-Fit values are
   k = 0.092±0.002
   ρ/ω = 0.7±0.1 (C)
   0.9±0.2 (Cu)



mass of  $\rho/\omega$  meson decreases by 9% at normal nuclear density.

### Contours for $k_1$ and $k_2$ of $\phi \rightarrow e^+e^-$

Pole Mass Shift  $M^*/M = 1 - k_1 \rho / \rho_0$ Width Broadening  $\Gamma^*/\Gamma = 1 + k_2 \rho / \rho_0$ 

- C and Cu data are simultaneously fitted.
- free parameters – parameter k<sub>1</sub> & k<sub>2</sub>
- Best-Fit values are
  k<sub>1</sub> = 0.034 ± 0.007
  k<sub>2</sub> = 2.6 ± 1.3



### Acceptance Correction for $\alpha$

