## <u>Partial decay widths of the φ</u> <u>into e<sup>+</sup>e<sup>-</sup> and K<sup>+</sup>K<sup>-</sup> pairs</u> in 12 GeV p+A reactions at KEK-PS E325

## Fuminori Sakuma, RIKEN, Japan

KEK<sub>A</sub>, RIKEN<sub>B</sub>, Kyoto Univ.<sub>C</sub>, CNS, Univ. of Tokyo<sub>D</sub>, Univ. of Tokyo<sub>E</sub> J.Chiba<sub>A</sub>, H.En'yo<sub>B</sub>, Y.Fukao<sub>C</sub>, H.Funahashi<sub>C</sub>, H.Hamagaki<sub>D</sub>, M.Ieiri<sub>A</sub>, M.Ishino<sub>C</sub>, H.Kanda<sub>C</sub>, M.Kitaguchi<sub>C</sub>, S.Mihara<sub>C</sub>, K.Miwa<sub>C</sub>, T.Miyashita<sub>C</sub>, T.Murakami<sub>C</sub>, R.Muto<sub>A</sub>, M.Nakura<sub>C</sub>, M.Naruki<sub>A</sub>, K.Ozawa<sub>E</sub>, O.Sasaki<sub>A</sub>, M.Sekimoto<sub>A</sub>, T.Tabaru<sub>B</sub>, K.H.Tanaka<sub>A</sub>, M.Togawa<sub>C</sub>, S.Yamada<sub>C</sub>, S.Yokkaichi<sub>B</sub>, Y.Yoshimura<sub>C</sub> (KEK-PS E325 collaboration)

Introduction

Results of data analysis

•  $\phi \rightarrow e^+e^-/K^+K^-$  spectra

•nuclear mass-number dependences of  $\phi \rightarrow e^+e^- \& \phi \rightarrow K^+K^-$ 

Nov. 13-16,2007 •Summary

chiral07

# **Vector Meson Modification**

## dropping mass

 Brown & Rho ('91) m\*/m=0.8 (ρ=ρ<sub>0</sub>)
Hatsuda & Lee ('92) m\*/m=1-0.16ρ/ρ<sub>0</sub> for ρ/ω m\*/m=1-0.03ρ/ρ<sub>0</sub> for φ

 Muroya, Nakamura & Nonaka ('03) Lattice Calc.

## width broadening

 Klingl, Kaiser & Weise ('97&98) 1GeV> for ρ, 45MeV for φ (ρ=ρ<sub>0</sub>)
Oset & Ramos ('01) 22MeV for φ (ρ=ρ<sub>0</sub>)
Cabrera & Vicente ('03) 33MeV for φ (ρ=ρ<sub>0</sub>)





# **KEK-PS E325 Experiment**

<u>Measurements</u> Invariant Mass of e⁺e⁻, K⁺K⁻ in 12GeV p+A→ρ,ω,φ+X reactions

slowly moving vector mesons (p<sub>lab</sub>~2GeV/c) large probability to decay inside a nucleus

## <u>Beam</u>

Primary proton beam (~10<sup>9</sup>/spill/1.8s)

## <u>Target</u>

Very thin targets  $(X/\lambda_1=0.2/0.05\%, X/X_0=0.4/0.5\%)$  for C/Cu)

## History of E325

'93 proposed '96 construction start ✓ NIM, A457, 581 ('01). ✓ NIM, A516, 390('04). '97 first K+K- data '98 first e<sup>+</sup>e<sup>-</sup> data ✓ ρ/ω: PRL,86,5019('01) **'99~'02** x100 statistics in e<sup>+</sup>e<sup>-</sup> ✓ ρ/ω: PRL,96,092301('06). *∲* → ee: PRL,98,042501('07). PR,C75,025201('06). α: x6 statistics in K+K<sup>-</sup> *(ϕ***→***KK: PRL,*98,152302('07). '02 completed

# **Observed Invariant Mass Spectra**



# $\phi \rightarrow e^+e^-$ Invariant Mass Spectra



→ examine the mass shape as a function of  $\beta\gamma$  (=p/m) (anomaly could be enhanced for slowly moving mesons)

## **Fitting Results**

βγ<1.25 (Slow)

1.25<βγ<1.75





# Model Calculation

- pole mass:  $m^*/m = 1 k_1 \rho / \rho_0$  (Hatsuda-Lee formula)
- width broadening:  $\Gamma^*/\Gamma = 1 + k_2 \rho / \rho_0$ 
  - e+e- branching ratio is not changed

 $\Gamma^{*}_{e+e} / \Gamma^{*}_{tot} = \Gamma_{e+e} / \Gamma_{tot}$ 

to increase the decay probability in a nucleus

- uniformly generated in target nucleus
  - α<sub>φ</sub>~1 [*PR*, *C*75, *0*25201 (2006).]
  - decay inside a nucleus (for  $\beta\gamma$ <1.25):

|   | С  | Cu |
|---|----|----|
| φ | 3% | 6% |

nuclear density distribution : Woods-Saxon



# $\phi \rightarrow K^+K^-$ Invariant Mass Spectra



 $\rightarrow$  examine the mass shape as a function of  $\beta\gamma$ 

## **Fitting Results**

#### βγ<1.7 (Slow)

1.7<βγ<2.2

#### **2.2<**βγ (Fast)



Mass-spectrum changes are NOT statistically significant However, impossible to compare  $\phi \rightarrow e^+e^-$  with  $\phi \rightarrow K^+K^-$ , directly

# Kinematical Distributions of observed $\boldsymbol{\phi}$



●the detector acceptance is different between e<sup>+</sup>e<sup>-</sup> and K<sup>+</sup>K<sup>-</sup>

•very limited statistics for  $\phi \rightarrow K^+K^$ in  $\beta\gamma < 1.25$  where the modification is observed in  $\phi \rightarrow e^+e^-$ 

> K+K<sup>-</sup> results are not inconsistent with e+e<sup>-</sup> results

## Partial Decay Widths of $\phi$ Meson



# $\begin{array}{c} \Gamma_{\phi \rightarrow K+K} / \Gamma_{\phi \rightarrow e^+e^-} \text{ and Nuclear Mass-Number} \\ & \text{Dependence } \alpha \end{array} \end{array}$

Γ<sub>φ→K+K</sub>/Γ<sub>φ→e+e-</sub> changes in a nucleus
→ N<sub>φ→K+K-</sub> /N<sub>φ→e+e-</sub> also changes
The lager modification is expected in the larger nucleus



### $\Delta \alpha$ shifts from 0

(to be enhanced in slowly moving  $\phi$  mesons)

## Results of Nuclear Mass-Number Dependence $\alpha$







#### (1) The values of expected $\Delta \alpha$ are obtained by the MC.

 $-\phi$  mesons are uniformly produced in a nucleus and decayed according to the values of  $k_{\kappa}$  and  $k_{e}$ .

#### 2 The measured $\Delta \alpha$ provides constraints on $k_{\kappa}$ and $k_{\rho}$ .

# Discussion on broadening of $\Gamma_{\phi \rightarrow K+K}$ and $\Gamma_{\phi \rightarrow e^+e^-}$

## **③** The constraint on $k_{K}$ is obtained from the K<sup>+</sup>K<sup>-</sup> spectra.

- In the K<sup>+</sup>K<sup>-</sup> spectra, we fit again excluding the region  $0.987(=2m_k) \sim 1.01 \text{GeV/c}^2$ .
- We obtain a surplus over the  $\phi$  peak and BG.
- From the MC, we estimate the ratio of the number of  $\phi$  mesons decayed inside to outside N<sub>in</sub>/N<sub>out</sub> (inside = the half-density radius of the Woods-Saxon dist.).
- When the surpluses are assumed as the  $\phi$ -meson decayed inside a nucleus, we obtain the constraint on  $k_{K}$  by comparing DATA with MC





#### **(4)** Limits on the in-medium decay widths are obtained.

- We renormalize the PDF eliminating an unphysical region corresponding to  $\Gamma^*/\Gamma$ <0, and obtain the 90% confidence limits.

# the first experimental limits assigned to the in-medium broadening of the partial decay widths

## Summary

•**KEK PS-E325** measured e<sup>+</sup>e<sup>-</sup> and K<sup>+</sup>K<sup>-</sup> invariant mass distributions in 12GeV p+A reactions.

• The significant excesses at the low-mass side of  $\phi$ -meson peak have been observed in very low  $\beta\gamma$  region of Cu target.

•In higher  $\beta\gamma$  region or C target, the observed  $\phi$ -meson are consistent with the expected shape in vacuum.

• The observed nuclear mass-number dependences of  $\phi \rightarrow e^+e^-$  and  $\phi \rightarrow K^+K^-$  are consistent.