<u>KEK-PS E325実験における、12GeV p+A→phi+Xを用いた</u> <u>ベクター中間子の質量に対する核物質効果の測定</u>

<u>京大理</u>, 高工研_A, 理研_B, 東大CNS_C, 東大ICEPP_D, 東北大_E, 阪大_F <u>佐久間史典</u>, 千葉順成_A, 延與秀人_B, 深尾祥紀, 舟橋春彦, 浜垣秀樹_C, 家入正治_A, 石野雅也_D, 神田浩樹_E, 北口雅暁, 三原智_D, 三輪浩司, 宮下卓也, 村上哲也, 武藤亮太郎_B, 名倉照直, 成木恵, 能町正治_F, 小沢恭一郎_C, 佐々木修_A, 佐藤博紀, 関本美智子_A, 田原司睦_B, 田中万博_A, 外川学, 山田悟, 四日市悟_B, 吉村善郎

- Physics motivation
- •E325 Setup
- Data analysis
 - ≻Kaon channel
- Summary

クォークの質量獲得メカニズム

どのようにして検証するか?

●QGPのような高温高密度の下でのカイ ラル対称性の回復・・・ RHIC,LHC,etc.

●*原子核中のような有限密度下にお* けるカイラル対称性の部分的回復

Vector Meson

<u>mass</u>

2xMq+(small interaction term) クォークの有効質量の変化をとらえやすい

<u>ρΙω</u>

●真空中に比べて通常原子核密度内での 質量変化は ~150MeV/c² ・・・しかし、 ρ/ω の区別は難しい& ρの幅は広くて分かりにくい Φ ●真空中に比べて通常原子核密度内での質量変 化は ~20-40MeV/c² ●~4.3MeV/c²の狭い崩壊幅 ⇒mass spectrum の変化に敏感 •小さいQ value ($Q_{\kappa\kappa}=32 \text{MeV/c}^2$) ⇒核物質効果が崩壊比の差となって現れる $[(\phi \rightarrow K^+K^-)/[(\phi \rightarrow e^+e^-)]$

predictions of vector meson modification in medium Brown,Rho(1991), Hatsuda,Lee(1992), Klingle,Keiser,Weise(1997),etc.

Φ Expected Shape

<u>Measurements</u>

12GeV p+A $\rightarrow \rho$, ω , ϕ +X e⁺e⁻, K⁺K⁻ invariant mass

核内で崩壊する~2GeV/cの 遅いベクターメソンを測定する

<u>Beam</u>

Primary proton beam (~10⁹/spill/1.8s)を用いる

<u>Target</u>

 γ conversionを減らすために 薄いターゲットを用いる (0.4% radiation length & 0.2% interaction length @C)

e⁺e⁻ mass spectra

Resonance :: Breit-Wigner+Geant4 Background :: combinatorial background

TOF resolution :: 360ps

Observed K+K- invariant mass spectra

<u>Fitting with known sources</u>

- Hadronic source of K⁺K⁻ (JAM results)
 - $\phi \rightarrow K^+K^-$, a0/f0 $\rightarrow K^+K^$ with Breit-Wigner shape (no modification)
 - Non-resonant K⁺K⁻ K⁺K⁻ pair NOT from ϕ and a0/f0 decay
 - Detector simulation by Geant4 (energy loss, acceptance, etc.)

Background from miss pID

 combinatorial background obtained by mixed events

Relative abundance of mesons and background

parameter(1) :: $\phi \rightarrow K^+K^-$

- paramater(2) :: Non-resonant K+K-
- parametar(3) :: a0/f0→K+K
 - fixed :: Background with a ratio to all K⁺K⁻ events

K⁺K⁻ mass spectra w/o a0/f0

K⁺K⁻ mass spectra w a0/f0

a0/f0を導入することにより、 *φ*のpeakの左側を再現できる

summary

 KEK-PS E325実験は12GeV/c²p+A=ρ,ω,φ+Xにおいて、 e⁺e⁻,K⁺K⁻両channelの測定を行う実験で、ベクターメソンに対する <u>通常原子核密度</u>下における核物質効果の測定を目的として行った

● φ→K+K-では、Cu-targetにおいて、φのpeakの左側に、φ, non-resonant, backgroundを用いたfitでは再現しきれない部分 が見られるものの、<u>a0/f0</u>を導入したfitではφのpeakの左側を再 現する

Next Step $e^+e^- \ge K^+K^- を合わせた解析$ $\checkmark \phi \rightarrow K^+K^- における、 e^+e^- と同様なkinematical cutのstudy$ $\checkmark \Gamma(\phi \rightarrow K^+K^-)/\Gamma(\phi \rightarrow e^+e^-)$ についてのstudy 14

Back-up

Parameters for $\phi \rightarrow e^+e^-$

17

Parameters for $\phi \rightarrow K^+K^-$

18

Number of EXCESS in $\phi \rightarrow e^+e^-$

For All Sample

	С		Cu	
$N(\phi)$	1612	±66	2073	<u>±</u> 81
N(excess)	141	±47	276	<u>±59</u>
N(excess)/(N(ϕ)+N(excess)) [%]	8	± 3	12	<u>±3</u>

For Slow Component ($\beta \gamma < 1.35$)

	С		Cu	
Ν (<i>φ</i>)	285	<u>+</u> 26	505	<u></u> ±36
N(excess)	43	±18	155	<u>+29</u>
N(excess)/(N(ϕ)+N(excess)) [%]	13	<u>±6</u>	24	<u>±5</u>

Single Track Momentum Resolution

Include all effect

Chamber resolution, chamber efficiency
 Penergy loss, multiple scattering

tracking region の物質を全て再現

 chamber wire も1本1本全て入っている~20,000本

 考えているPhysics

 Energy loss (Ionization, Bremsstrahlung)
 Multiple Scattering

 acceptance の再現

 chamber resolution, efficiency の再現