Mass modification of phi meson

measured in $12-\mathrm{GeV}$ p+A reaction at KEK-PS E325

 Kyoto Univ., KEK $_{A}$, RIKEN $_{B}$, CNS Univ. of Tokyo $_{C}$, ICEPP Univ. of Tokyo $_{\mathrm{D}}$, Tohoku Univ. ${ }_{\text {E }}$F.Sakuma, J.Chiba ${ }_{A}$, H.En'yo $_{B}$, Y.Fukao, H.Funahashi, H.Hamagaki ${ }_{C}$, M.leiri $_{\mathrm{A}}$, M. Ishino ${ }_{\mathrm{D}}$, H.Kanda ${ }_{\mathrm{E}}$, M.Kitaguchi, S.Mihara ${ }_{\mathrm{D}}$, K.Miwa, T.Miyashita, T.Murakami, R.Muto ${ }_{B}$, M.Nakura, M.Naruki ${ }_{B}$, M.Nomachi ${ }_{A}$, K.Ozawa ${ }_{C}$, O.Sasaki ${ }_{A}$, H.D.Sato, M.Sekimoto ${ }_{A}$, T.Tabaru $_{B}$, K.H.Tanaka ${ }_{A}$, M.Togawa, S.Yamada, S.Yokkaichi ${ }_{B}$, Y.Yoshimura

-Physics motivation
 -E325 Setup
 -Data analysis
 -Summary

Physics Motivation

Quark Mass

chiral symmetry

restoration
bare mass $\mathrm{m}_{\mathrm{u}} \fallingdotseq \mathrm{m}_{\mathrm{d}} \doteqdot 5 \mathrm{MeV} / \mathrm{c}^{2}$ $\mathrm{m}_{\mathrm{s}} \fallingdotseq 150 \mathrm{MeV} / \mathrm{c}^{2}$
chiral symmetry
braking
How we can detect such a quark mass change?
Partial chiral symmetry restoration under normal nuclear density

Vector Meson

Vector Meson

ϕ meson

- mass decreases

$$
\sim 20-40 \mathrm{MeV} / \mathrm{c}^{2}
$$

- narrow decay width ($\Gamma=4.3 \mathrm{MeV} / \mathrm{c}^{2}$)
\Rightarrow sensitive to the mass spectrum change
- small decay Q value ($\mathrm{Q}_{\mathrm{K}+\mathrm{K}}=32 \mathrm{MeV} / \mathrm{c}^{2}$) \Rightarrow the branching ratio is sensitive to ϕ (or K) meson modification

For example

■ mass decreases
$\rightarrow \Gamma_{\mathrm{K}+\mathrm{K}-}$ becomes small
■K mass decreases
$\rightarrow \Gamma_{\mathrm{K}+\mathrm{K} \text { - }}$ becomes large

ρ_{0} :normal nuclear density
ϕ : T.Hatsuda, S.H.Lee, Phys. Rev. C46(1992)R34.

K : H.Fujii, T.Tatsumi, PTPS 120(1995)289.

KEK-PS E325

Measurements

Invariant Mass of $\mathrm{e}^{+} \mathrm{e}^{-}, \mathrm{K}^{+} \mathrm{K}^{-}$
in $12 \mathrm{GeV} p+A \rightarrow \rho, \omega, \phi+X$ reactions slowly moving vector mesons ($\mathrm{p}_{\mathrm{lab}} \sim 2 \mathrm{GeV} / \mathrm{c}$) large probability to decay inside a nucleus

Beam

Primary proton beam ($\sim 10^{9} /$ spill/1.8s)

Target

Very thin targets e.g. 0.4\% radiation length \&
0.2% interaction length for C-target

A combination of very thin targets with
$12 \mathrm{GeV}-\mathrm{PS}$ high intensity beam is very important to reduce the background from γ conversion.

Setup

Forward LG Calorimeter

Rear LG Calorimeter

Side LG Calorimeter

Barrel Drift Chamber

Cylindrical DC

Vertex DC Front Gas Cherenkov
1m

Aerogel Cherenkov
Forward TOF

Rear Gas Cherenkov

Mass Spectra

Kinematical Distributions for observed ϕ

- $\phi \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$
$\bullet \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$

The detector acceptance is different between e+e- and $\mathrm{K}^{+} \mathrm{K}^{-}$ \rightarrow But there is an overlap region

Slowly moving ϕ meson should have larger probability to decay inside a nucleus

Fitting Methods

- Background : quadratic curve ($e^{+} e^{-}$) mixed event method ($\mathrm{K}^{+} \mathrm{K}^{-}$)
$\bullet \phi$ Shape \quad : Breit-Wigner distribution
smeared by taking the experimental effects into account using Geant4 simulation
- physical processes and detector effects
\bullet Examine the mass shape as a function of $\beta \gamma \rightarrow \mathrm{Next}$

Fit Results for $\mathrm{e}^{+} \mathrm{e}^{-}$(divided by $\beta \gamma$)

Mass Shape for $\mathrm{e}^{+} \mathrm{e}^{-}$

A significant enhancement is seen in the Cu data, in $\beta \gamma<1.25$
$>$ the excess is attributed to the ϕ mesons which decay inside the nucleus and are modified

I. Fit the spectra again by excluding the excess region, 0.95~1.01GeV/c²
II. Integrate the spectra in the excess region
III. Subtract the background and the normal phi meson shape which are determined by the fit

Model Calc.

$$
m * / m=1-k_{1} \rho / \rho_{0}
$$

$$
\Gamma_{\mathrm{ee}}{ }^{*} / \Gamma_{\mathrm{ee}}=1+\mathrm{k}_{2} \rho / \rho_{0} 0.1
$$

$$
k_{1}=0.04, k_{2}=10
$$

The model calculation reproduces the tendency of our data

Fit Results for $\mathrm{K}^{+} \mathrm{K}^{-}($divided by $\beta \gamma)$

Mass spectrum changes are NOT statistically significant $>$ the statistics in the $\mathrm{K}^{+} \mathrm{K}^{-}$mode is much less than those in the $\mathrm{e}^{+} \mathrm{e}^{-}$mode $>\mathrm{K}^{+} \mathrm{K}^{-}$data is extremely limited in $\beta \gamma<1.25$

$\Gamma_{\mathrm{K}+\mathrm{K}} / \Gamma_{\mathrm{e}+\mathrm{e}}$ and Nuclear Size Dependence α

$$
\sigma(A)=\sigma(A=1) \times A^{\alpha}
$$

example of α change
$\bullet \Gamma_{\mathrm{K}+\mathrm{K}} / \Gamma_{\mathrm{e}+\mathrm{e}-}$ increases in a nucleus
$\rightarrow \mathrm{N}_{\phi \rightarrow \mathrm{K}_{+K-}} / \mathrm{N}_{\phi \rightarrow \mathrm{e}^{+\mathrm{e}}}$ becomes large - The lager modification is expected in the larger nucleus

- $\alpha_{\phi \rightarrow K+K .}$ becomes larger than $\alpha_{\phi \rightarrow e+e-}$ - The difference of α is expected to be enhanced in slowly moving ϕ mesons

$\alpha_{\phi \rightarrow K+K-}$ looks larger than $\alpha_{\phi \rightarrow e+e^{-}}$in lower $\beta \gamma$ region

Summary

-KEK PS-E325 measures $\mathrm{e}^{+} \mathrm{e}^{-}$and $\mathrm{K}^{+} \mathrm{K}^{-}$invariant mass distributions in 12 GeV p+A reactions.

- Significant enhancement is seen on the $\mathbf{e}^{+}{ }^{-}$invariant mass distributions at the low-mass side of the ϕ meson peak in the Cu data, in $\beta \gamma<1.25$ region. Model calculations reproduce the tendency of our data when the mass modification of ϕ is taken into account.
- Mass spectrum changes are NOT statistically significant in $\mathbf{K}^{+} \mathbf{K}^{-}$invariant mass distributions. Our statistics in the $\mathrm{K}^{+} \mathrm{K}^{-}$decay mode are quite low in the $\beta \gamma$ region in which we see the enhancement in the $\mathrm{e}^{+} \mathrm{e}^{-}$mode.
- $\alpha_{\phi \rightarrow K+K-}$ looks larger than $\alpha_{\phi \rightarrow \text { e+e- }}$ in lower $\beta \gamma$ region. This is very interesting observation, because it can be related to the ϕ and Kaon modification in nuclear matter.

