

<u>京大理</u>,高工研_A,理研_B,東大CNS_C,東大ICEPP_D,東北大_E <u>佐久間史典</u>,千葉順成_A,延與秀人_B,深尾祥紀,舟橋春彦,浜垣秀樹_C, 家入正治_A,石野雅也_D,神田浩樹_E,北口雅暁,三原智_D,三輪浩司, 宮下卓也,村上哲也,武藤亮太郎_B,名倉照直,成木恵_B, 小沢恭一郎_C,佐々木修_A,関本美智子_A,田原司睦_B, 田中万博_A,外川学,山田悟,四日市悟_B,吉村善郎

- Physics motivation
- •E325 Experiment
- •Results of data analysis
 - (based on nucl-ex/0606029)

•Summary

Physics Motivation

カイラル対称性の回復

このような質量の変化をどのようにして検証するか?

Vector Meson, ϕ

●予想される質量の減少 \rightarrow 20-40MeV/c² @ $\rho = \rho_0$ 1.050 ●狭い崩壊幅 (Г=4.3MeV/c²) 1.025 → 質量スペクトラムの変化に敏感 GeV 1.000 € 0.975 K+K-●小さい崩壊Q値 (Q_{к+к-}=32MeV/c²) threshold 0.950 によって、崩壊比が変化する可能性 0.925 0.0 0.5 10 非常に簡単な例として、 ρ_0 :normal nuclear density ϕ : *T.Hatsuda*, *S.H.Lee*, Phys. Rev. C46(1992)R34. $\rightarrow \Gamma_{\phi \rightarrow K+K}$ は小さくなる ■Kの質量が減少 K: H.Fujii, T.Tatsumi, PTPS 120(1995)289. $\rightarrow \Gamma_{\phi \rightarrow K+K}$ は大きくなる

2.0

mass

1.5

$\Gamma_{\phi \rightarrow K+K} / \Gamma_{\phi \rightarrow e^+e^-}$ and Nuclear Mass-Number Dependence α

KEK-PS E325 Experiment

Toy Model Calculation

- mass shift: **m*/m = 1-k**₁ρ/ρ₀ (初田-Lee)
- width broadening: $\Gamma^*/\Gamma = 1 + k_2 \rho / \rho_0$
 - e+e-崩壊比は変えていない

 $\Gamma^*_{e+e}/\Gamma^*_{tot} = \Gamma_{e+e}/\Gamma_{tot}$

- 原子核中で一様に生成
- 原子核密度分布: Woods-Saxon
- 質量スペクトラム : Breit-Wigner

fit結果: m*/m = 1 - 0.034 ρ/ρ₀ Γ*/Γ = 1 + 2.6 ρ/ρ₀

詳細な結果は nucl-ex/0511019

Kinematical Distributions of observed $\boldsymbol{\phi}$

Results of Nuclear Mass-Number Dependence α

Discussion on $\Gamma_{\phi \rightarrow K+K^-}$ and $\Gamma_{\phi \rightarrow e^+e^-}$

崩壊幅の変化の上限を導く

<u>2つの手法を用いて上限を求めていく</u>

- A) Γ_{φ→K+K}-とΓ_{φ→e+e}-が核物質中で変化すると、Δαが変化する
 部分崩壊幅が変化したときのΔαの変化を計算し、データ
 (Δα=0.14+/-0.12)と比較することにより、Γ*_{φ→K+K}-/Γ*_{φ→e+e}-の上限を
 求めることが出来る
- B) e⁺e⁻のデータが示唆するように、核物質中でΓ_φが増えるとφ中間子のピークの左側にexcessが見えるはずである K⁺K⁻スペクトラムをe⁺e⁻解析と同様に解析することによりexcessの 数の上限値を出し、Γ^{*}_φの上限を求めることが出来る

Discussion on $\Gamma_{\phi \rightarrow K+K}$ and $\Gamma_{\phi \rightarrow e+e}$

●核内での崩壊幅は密度に比例して変化す ると仮定

$$\Gamma_{\phi}^{*} / \Gamma_{\phi}^{0} = 1 + k_{\text{tot}} \left(\rho / \rho_{0} \right),$$

$$\Gamma_{\phi \to K^{+}K^{-}}^{*} / \Gamma_{\phi \to K^{+}K^{-}}^{0} = 1 + k_{K} \left(\rho / \rho_{0} \right),$$

$$\Gamma_{\phi \to e^{+}e^{-}}^{*} / \Gamma_{\phi \to e^{+}e^{-}}^{0} = 1 + k_{e} \left(\rho / \rho_{0} \right)$$

• Γ_{ϕ} の変化率が $\Gamma_{\phi \to K+K-}$ と等しいと仮定 $k_{tot} \simeq k_{K}$

●前述のA),B)により(k_e,K_k)平面に2本の上 限の線を引くことが出来る

Γ*/Γ<0な領域を除くようにリノー マライズして得た90%C.L.

部分崩壊幅の核物質中でのbroadeningの上限値が、 実験的にはじめて得られた

Summary

KEK PS-E325は12GeV p+A反応を用いてe⁺e⁻とK⁺K⁻不変質量分布
 を測定する実験で、通常原子核密度下における中間子質量への核物
 質効果を検証する目的で行った

 ●得られた∆αを基にして、↓中間子の部分崩壊幅の核物質中での broadeningの上限値が、実験的にはじめて得られた

Acceptance Correction for α

