Vector meson modification measured in 12 GeV p+A interaction at KEK-PS

Satoshi Yokkaichi , RIKEN

for the KEK-PS E325 collaboration

- Physics
- Expected experimental signature
- Performed experiment KEK-PS E325
- E325 Results
- 1) $\rho / \omega \rightarrow \mathbf{e}^{+} \mathbf{e}^{-} \quad$ spectra
- 2) $\phi \rightarrow \mathbf{e}^{+} \mathbf{e}^{-}$spectra
- 3) $\phi \rightarrow \mathbf{K}^{+} \mathbf{K}^{-}$spectra
- Future experiment at J-PARC

Chiman Sympmetry restoration in dense matter

- In hot/dense matter, chiral symmetry is expected to restore
- hadron modification is expected in such matter
- quark-antiquark condensate (order parameter) : $\sim 2 / 3$ even at the normal nuclear density, $\mathrm{T}=0$
- Achievable at KEK-PS in use of nuclear medium of target nuclei themselves.

- Many theoretical predictions of vector meson (mass/width) modification in dense medium, related (or not related) with CS
- Brown \& Rho ('91) : $m^{*}(\rho) / m_{0} \sim f_{\pi}^{*} / f_{\pi} \sim 0.8$ at $\rho=\rho_{0}$
- Hatsuda \&Lee ('92), Klingle, Kaiser \&Weise ('97), Muroya, Nakamura \& Nonaka('03), etc.

Hatsuda and Lee, PRC46(92)R34.PRC52(95)3364 linear dependence on density $\mathrm{m}^{*} / \mathrm{m}_{0}=1-\mathrm{k} \rho / \rho_{0}$ mass decreasing

- 16($\pm 6) \%$
- 0.15($\pm 0.05)^{*} \mathrm{y}$ $=2 \sim 4 \% \quad$ for ϕ (for $\mathrm{y}=0.22$)
at the normal nuclear density

Muroya, Nakamura, Nonaka, PLB 551 (03) 305

Klingle,Kaiser,Weise, NPA624(97)527

Expected signal in

$\mathrm{p}+$ A reaction in our
energy region

Axpected invariant mass spectia in $\mathbf{e}^{+} \mathbf{e}^{-}$

- smaller FSI in $\mathrm{e}^{+} e^{-}$decay channel

1) decay inside nuclei \quad 2) decay outside nuclei

- double peak (or tail-like) structure :
- second peak is made by inside-nucleus decay (modified meson) : amount depend on the nuclear size and meson velocity
- could be enhanced for slower mesons \& larger nuclei
longer-life meson $(\omega$ \& ϕ) cases : Schematic picture outside decay inside decay (natural) (modified)

expected to be observed

Expected Invariant mass spectra in $\mathbf{e}^{+} \mathbf{e}^{-}$

- smaller FSI in $\mathrm{e}^{+} e^{-}$decay channel

1) decay inside nuclei \quad 2) decay outside nuclei

- double peak (or tail-like) structure :
- second peak is made by inside-nucleus decay (modified meson) : amount depend on the nuclear size and meson velocity
- could be enhanced for slower mesons \& larger nuclei
shorter-life meson(ρ) cases : Schematic picture

outside decay (natural)

inside decay (modified)
expected to be observed

(Expected $\mathbf{e}^{+} \mathbf{e}^{-}$spectra)

(toy model calc.)

- $\rho(770) \& \omega(783):$
- larger production cross section
- larger decay prob. inside nuclei
- $\rho: \Gamma=150 \mathrm{MeV} \sim 1.3 \mathrm{fm}$

- $\omega: \Gamma=8.4 \mathrm{MeV} \sim 24 \mathrm{fm}$
- cannot distinguish $\rho \& \omega$ in $\mathrm{e}^{+} \mathrm{e}^{-}$

1) decay inside nuclei
2) decay outside nuclei

C

Pb

(Expected $\mathbf{e}^{+} \mathbf{e}^{-}$spectra)

- $\rho(770) \& \omega(783):$
- larger production cross section
- larger decay prob. inside nuclei
- $\rho: \Gamma=150 \mathrm{MeV} \sim 1.3 \mathrm{fm}$
- $\omega: \Gamma=8.4 \mathrm{MeV} \sim 24 \mathrm{fm}$
- cannot distinguish $\rho \& \omega$ in $\mathrm{e}^{+} \mathrm{e}^{-}$
- ϕ (1020) : narrow width
- smaller decay prob. inside nuclei
- $\phi: \Gamma=4.3 \mathrm{MeV} \sim 46 \mathrm{fm}$
- smaller production cross section
- $\mathrm{L}=\beta \gamma * \mathrm{c} \tau=\mathrm{p} / \mathrm{m} * \mathrm{~h} / 2 \pi^{*} \mathrm{c} / \Gamma$

Experiment KEK-PS E325

- $12 \mathrm{GeV} \mathrm{p}+\mathrm{A} \rightarrow \rho / \omega / \phi+\mathrm{X}\left(\rho / \omega / \phi \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}, \phi \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}\right)$
- Experimental key issues:
- Very thin target to suppress the conversion electron background (typ. 0.1% interaction $/ 0.2 \%$ radiation length of C)
- To compensate the thin target, high intensity proton beam to collect high statistics (typ. $10^{9} \mathrm{ppp} \rightarrow 10^{6} \mathrm{~Hz}$ interaction)
- Large acceptance spectrometer to detect slowly moving mesons, which have larger probability decaying inside nuclei $(1<\beta \gamma<3)$

Collaboration

J. Chiba, H. En'yo, Y. Fukao, H. Funahashi, H. Hamagaki, M. Ieiri, M. Ishino, H. Kanda, M. Kitaguchi, S. Mihara, K. Miwa, T. Miyashita,T. Murakami, R. Muto, T. Nakura,
M. Naruki, K.Ozawa, F. Sakuma, O. Sasaki, H.D.Sato, M.Sekimoto,
T.Tabaru, K.H. Tanaka, M.Togawa, S. Yamada, S.Yokkaichi, Y.Yoshimura
(Kyoto Univ. , RIKEN, KEK, CNS-U.Tokyo, ICEPP-U.Tokyo, Tohoku-Univ.)

(Cont'd)

- History of E325
- 1993 proposed
- 1996 const. start
- '97 data taking start
- '98 first ee data
- PRL86(01)5019
- 99,00,01,02....
- x100 statistics
- PRL96(06)092301
- nucl-ex/0511019
- '02 completed
- spectrometer paper

- Spectrometer Magnet
- 0.71 T at the center
- 0.81Tm in integral
- Targets
- at the center of the Magnet
- $\mathrm{C} \& \mathrm{Cu}$ are used typically
- very thin: $\sim 0.1 \%$ interaction length
- Primary proton beam
- $12.9 \mathrm{GeV} / \mathrm{c}$
- $\sim 1 \times 10^{9}$ in 2 sec duration, 4sec cycle

Experimental setup - Detectors

Electron ID counters Gas Cherenkov \& Lead Glass EMC total $3 \times 10^{-4} \pi$ rejection 1000 with 78% e efficiency in two-stage operation

Three Drift Chambers-1000

Aerogel Cherenkov \& TOF

- Typical $\mathrm{e}^{+} \mathrm{e}^{-}$Event
- blue:electron
- red : other
- invariant mass of eletron pair is calculated

Result (1)

ee invariant mass spectra

 M. Naruki et al., PRL 96 (2006) 092301 (nucl-ex/050416)
Observed $\mathrm{e}^{+} \mathrm{e}^{-}$invariant mass spectra

- from 2002 run data ($\sim 70 \%$ of total data)
- C \& Cu target
- clear resonance peaks
- $\mathrm{m}<0.2 \mathrm{GeV}$ is suppressed by detector acceptance
- acceptance uncorrected
\rightarrow fit the spectra with known sources

Fitting with known sources

- Hadronic sources of $\mathrm{e}^{+} \mathrm{e}^{-}$:
$-\rho / \omega / \phi \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}, \omega \rightarrow \pi^{0} \mathrm{e}^{+} \mathrm{e}^{-}$, $\eta \rightarrow \gamma \mathrm{e}^{+} \mathrm{e}^{-}$
- relativistic Breit-Wigner shape (without any modifications)
- Geant4 detector simulation
- multiple scattering and energy loss of $\mathrm{e}^{+} / \mathrm{e}^{-}$in the detector and the target materials
- chamber resolutions
- detector acceptance, etc.
- Combinatorial background : event
 mixing method
- Relative abundance of these components are determined by the fitting

Fitting results

- 1) excess at the low-mass side of ω
- To reploduce the data by the fitting, we have to exclude the excess region : $0.60 \sim 0.76 \mathrm{GeV}$
- 2) ρ-meson component seems to be vanished '

Fitting results (BKG subtracted)

$$
\rho / \omega<0.15(\text { for } \mathrm{C}) \quad<0.31(\text { for } \mathrm{Cu}) \quad(95 \% \mathrm{CL})
$$

- However, $\rho / \omega=1.0 \pm 0.2$ in former experiment ($p+p, 1974$) ...suggests that the origin of excess is modified ρ mesons.

Toy model M.C. including modification

- Assumptions to include the nuclear size effect in the fitting shape
- mesons fly through the nucleus, decay with modified mass if the decay point is inside nucleus
- meson production point : incident surface of nucleus
- measured $\alpha \sim 2 / 3$ for ω
- meson momentum :
- measured distribution in our experiment
 - $\sim 0.8 \mathrm{GeV}<\mathrm{p}<\sim 2.4 \mathrm{GeV}$ for ω
- nuclear density distribution : Woods-Saxon type
- $\rho \& \omega$ meson modification form : $\quad \mathrm{m}^{*} / \mathrm{m}_{0}=1-\mathrm{k} \rho / \rho_{0}$ ($\mathrm{k}=0.16 \pm 0.06$ in Hatsuda \& Lee, '92,'96)
- (width modification \& momentum dependence of modification are not taken into account this time)

Fitting results by the toy model

Free param.: - scales of background and hadron components for each $\mathrm{C} \& \mathrm{Cu}$

- modification paramter k for ρ / ω is common for $\mathrm{C} \& \mathrm{Cu}$

From the fit $: k=0.092 \pm 0.002 \quad: \sim 9 \%$ reduced at normal nuclear density ρ / ω ratio $: 0.7 \pm 0.1(\mathrm{C}), 0.9 \pm 0.2(\mathrm{Cu}): \ldots \quad \rho$ meson returns.

Remark on the model fitting

- constraint at right side of peak
- Intoducing the width broadning ($\mathrm{x} 2 \& \mathrm{x} 3$) are rejected by this costraint.
- prediction of ' ρ mass increasing' is also not allowed.
- $\rho(\omega)$ decay inside nucleus : $46 \%(5 \%)$ for $\mathrm{C}, 61 \%(10 \%)$ for Cu
- used spectrum is the sum of the shifted and not-shifted components.
- momentum dependence of mass shift is not included. (But typical p $=1.5 \mathrm{GeV}$)

Result (2)

22 ${ }^{\text {nd }}$ WWND @ La Jolla 06Mar16 S.Yokkaichi

$\phi \rightarrow \mathbf{e}^{+} \mathbf{e}^{-}$invariant mass spectra

- from 2001/02 run data
- C \& Cu target
- acceptance uncorrected
- mass resolution : 10.7 MeV
- fit with
- simulated mass shape of ϕ
- (evaluated as same as $\rho \& \omega$)
- polinomial curve background

$\phi \rightarrow \mathbf{e}^{+} \mathbf{e}^{-}$invariant mass spectra

- from 2001/02 run data
- C \& Cu target
- acceptance uncorrected
- mass resolution : 10.7 MeV
- fit with
- simulated mass shape of ϕ
- (evaluated as same as $\rho \& \omega$)
- polinomial curve background
- examine the 'excess' is significant or not.
$-\rightarrow$ see the $\beta \gamma$ dependence : excess could be enhanced for slowly moving mesons

$\mathbf{e}^{+} \mathbf{e}^{-}$spectra of ϕ meson (divided by $\beta \gamma$)

- Only slow/Cu is not reproduced in 99% CL.

Amount of excess

- To evaluate the amount of excess $\left(\mathrm{N}_{\text {excess }}\right)$, fit again excluding the excess region $(0.95 \sim 1.01 \mathrm{GeV})$ and integrate the excess area.

Amount of excess

- To evaluate the amount of excess $\left(\mathrm{N}_{\text {excess }}\right)$, fit again excluding the excess region $(0.95 \sim 1.01 \mathrm{GeV})$ and integrate the excess area.
- Model calculation reproduces the tendency of $\mathrm{N}_{\text {excess }} /\left(\mathrm{N}_{\text {excess }}+\mathrm{N}_{\mathrm{\phi}}\right)$

Toy model again for ϕ meson

- Toy model like ρ / ω case, except for
$\beta \gamma<1.25$ (Slow), w/ unmodified
- uniformly made in nuclei
- measured α of ϕ production ~ 1

$-\mathrm{m}^{*} / \mathrm{m}_{0}=1-\mathrm{k}_{1} \rho / \rho_{0}$
$\left(\mathrm{k}_{1}=0.04, \quad\right.$ Hatsuda \& Lee, '92,'96)
- To reproduce such amount of excess, lineardependent width broadening is adopted :

$$
\begin{aligned}
& \Gamma_{\text {tot }}^{*} / \Gamma_{\text {tot }}^{0}=1+\mathrm{k}_{2} \rho / \rho_{0} \\
& \left(\mathrm{k}_{2}=10, \text { it means } \Gamma_{\text {tot }}^{*}=\sim 47 \mathrm{MeV} \text { at } \rho_{0}\right)
\end{aligned}
$$

(predicted value by Klingl et al., '98)

- $\mathrm{e}^{+} \mathrm{e}^{-}$branching ratio is not changed

$$
-\Gamma_{\mathrm{e}+\mathrm{e}-}^{*} \Gamma_{\mathrm{tot}}^{*}=\Gamma_{\mathrm{e}+\mathrm{e}-}^{0} / \Gamma_{\mathrm{tot}}^{0}
$$

- $\mathrm{k}_{1} \& \mathrm{k}_{2}$ is not free param., but fixed.

Toy model result for ϕ meson

- modified (model) shapes well reproduce the data, even slow/Cu
- modified shapes are analyzed with unmodified shape to evaluate the $\mathrm{N}_{\text {excess }} /\left(\mathrm{N}_{\text {excess }}+\mathrm{N}_{\phi}\right)$

$\beta \gamma<1.25$ (Slow), w/ modified

Result (3)

(KK invariant mass spectra

 \& nuclear dependence $\underline{\alpha}$ by F. Sakuma)
$\mathbf{K}^{+} \mathbf{K}^{-}$spectra of ϕ meson

- mass modification is NOT statistically significant (very low statistics in $\beta \gamma<1.25$ where modification is observed in $\left.\phi \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}\right)$

Proposed

Experiment at
J-PARC

Next generation experiment at J-PARC

- Same concept as E325
- thin target / primary beam $\left(10^{9} \sim 10^{10} \mathrm{ppp}\right)$ / slowly moving mesons
- Main goal : collect $1 \mathrm{x}\left(10^{4} \sim 10^{5}\right) \phi \rightarrow$ ee for each target in 5 weeks
- 10-100 times as large as E325
- velocity dependence of 'modified' component
- new nuclear targets : proton ($\mathrm{CH}_{2}-\mathrm{C}$ subtract), Pb
- narrow width -> sensitive to modification
- free from $\omega-\rho$ interference
- ω, ρ and J / ψ can be collected at the same time
- higher statistics of ω, ρ than E325 with differ A targets
- $100-1000 \mathrm{~J} / \psi$ are expected in 50 GeV operation
- Normal nuclear density ($\mathrm{p}+\mathrm{A}$)
- but also high matter density (A+A, $\sim 20 \mathrm{GeV} / \mathrm{u})$

Proposed spectrometer

- Tracking Device
- Drift Chamber
- GEM(Gas electron multiplier)
- strip readout
- Two-stage Electron ID
- Gas Cherenkov
- PMT+2 mirrors
- GEM+CsI photocathode
- pad readout
- Leadglass EMC
- ~30K Readout Channels (in 20 units)
- E325: 3.6K, PHENIX:~300K
- Cost : ~\$5M (including \$2M electronics)

Schematic view of spectrometer

segment w/GEM

high statistics

- Main goal : collect $10^{4} \sim 10^{5} \phi \rightarrow$ ee for each target in 5 weeks
- 100 times as large as E325
- velocity dependence of 'modified' component

error bars are shrinked and $\beta \gamma$ bin can be divided

Higen Higtistics $^{\circ}$

- Main goal : collect $10^{4} \sim 10^{5} \phi \rightarrow$ ee for each target in 5 weeks
- 100 times as large as E325
- velocity dependence of 'modified' component

We can compare the data with theoretical predictions more precisely, and we could approach the puzzle that the modification is due to the chiral symmetry restoration or not.

Summary

- KEK-PS E325 measured the $\mathrm{e}^{+} \mathrm{e}^{-} \& \mathrm{~K}^{+} \mathrm{K}^{-}$decay of slowly moving vector mesons in nuclei produced by $12-\mathrm{GeV}$ proton beam, to explore the chiral symmetry restoration at the normal nuclear density.
- Observed $\mathrm{e}^{+} \mathrm{e}^{-}$invariant mass spectra have excesses below the ω meson peak, which cannot be explained by known hadronic sources in normal (unmodified) shape. These suggest modification of (at least) ρ meson.
- Simple model calculation including predicted modification of $\rho \& \omega$ reproduces the observed spectra.
- analysis of the verocity dependence of the excesses are on going.
- $\phi \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$also have excess, for the larger target, slowly moving component
- model calc. including mass shift and width broadening in nuclei also reproduces the data.
- Analysis of nuclear dependence of $\phi \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} \& \phi \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$is also on going to investigate $\Gamma_{\text {K+K. }} / \Gamma_{\text {ete- }}$ changing in nuclei.

