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I-5. Hadron Physics (Theory)

Spatial Wilson loops in high-energy heavy-ion collisions

A. Dumitru*!*2

Collisions of heavy ions at high energies provide op-
portunity to study non-linear dynamics of strong QCD
color fields?). The field of a very dense system of color
charges at rapidities far from the source is determined
by the classical Yang-Mills equations with a recoilless
current along the light cone®. It consists of gluons
characterized by a transverse momentum pp on the
order of the density of valence charges per unit trans-
verse area Qi; this saturation momentum scale sepa-
rates the regime of non-linear color field interactions at
pr S Qs or distances r 2 1/Q5 from the perturbative
regime at pr > Q.

Right after the impact strong longitudinal chromo-
magnetic fields B, ~ 1/g develop due to the fact that
the individual projectile and target fields do not com-
mute?). They fluctuate according to the random local
color charge densities of the valence sources. Here we
show that magnetic loops

Wy (R) = Nic <tr7>exp (ig]{dmiAi)> (1)

effectively exhibit area law scaling, W, (R) ~ eoTR

and we compute the magnetic string tension o. Fur-
thermore, we argue that at length scales ~ 1/Q; the
field configurations might be viewed as uncorrelated
Z(N) vortices. We also compare to the expectation
value of the Z(N.) part of the loop; thus, for two col-
ors we compute

W2 (R <sgn (P exp (ig j'{ dxiAi)> @)

where sgn() denotes the sign function.

The field in the forward light cone immediately after
a collision®, at proper time 7 = V12 — 22 — +0, is
given by A® = o} + a4. In turn, before the collision
the individual fields of projectile and target are 2d pure
gauges,

afn = 1 Un alU’rtL ) aiafn =9Pm , (3)
g

where m = 1, 2 labels projectile and target, respec-
tively, and U,, are SU(N) matrices. Note that for
a non-Abelian gauge group, the sum A’ of two pure
gauges is not a pure gauge, so Wy # 1.

The large-x valence charge density p is a random
variable. For a large nucleus, the effective action de-
scribing color charge fluctuations is quadratic?, Seg =
p%(x)p®(x)/2u?. The variance of color charge fluctua-
tions determines the saturation scale Q2 ~ g*u?. The
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brackets in eq. (1) denote an average over the fluctuat-
ing color charges p1(x), p2(x) of the two charge sheets
corresponding to projectile and target, respectively.
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Fig. 1. Expectation value® of the magnetic flux loop right

after a collision of two nuclei (time 7 = +0) as a func-
tion of its area A’ = AQ?2. Symbols show numerical
results for SU(2) Yang-Mills on a 40962 lattice; the lat-
tice spacing is set by g2/t = 0.0661. The lines represent
fits over the range 4 > A’ > 2.

In fig. 1 we show numerical results for Wy, imme-
diately after a collision. It exhibits area law behavior
for loops larger than A > 2/Q2. The corresponding
“magnetic string tension” is op//Q% = 0.12(1). The
area law indicates uncorrelated magnetic flux fluctu-
ations through the Wilson loop and that the area of
magnetic vortices is rather small, their radius being
on the order of Ryix ~ 0.8/Qs. We do not observe a
breakdown of the area law up to A ~ 4/Q2, imply-
ing that vortex correlations are small at such distance
scales. Also, restricting to the Z(2) part reduces the
magnetic flux through small loops but o), is compara-
ble to the full SU(2) result.
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