Spatial Wilson loops in high-energy heavy-ion collisions

A. Dumitru^{*1,*2}

Collisions of heavy ions at high energies provide opportunity to study non-linear dynamics of strong QCD color fields¹⁾. The field of a very dense system of color charges at rapidities far from the source is determined by the classical Yang-Mills equations with a recoilless current along the light cone²⁾. It consists of gluons characterized by a transverse momentum p_T on the order of the density of valence charges per unit transverse area Q_s^2 ; this saturation momentum scale separates the regime of non-linear color field interactions at $p_T \leq Q_s$ or distances $r \gtrsim 1/Q_s$ from the perturbative regime at $p_T \gg Q_s$.

Right after the impact strong longitudinal chromomagnetic fields $B_z \sim 1/g$ develop due to the fact that the individual projectile and target fields do not commute³⁾. They fluctuate according to the random local color charge densities of the valence sources. Here we show that magnetic loops

$$W_M(R) = \frac{1}{N_c} \left\langle \operatorname{tr} \mathcal{P} \exp\left(ig \oint dx^i A^i\right) \right\rangle \tag{1}$$

effectively exhibit area law scaling, $W_M(R) \sim e^{-\sigma \pi R^2}$, and we compute the magnetic string tension σ . Furthermore, we argue that at length scales $\sim 1/Q_s$ the field configurations might be viewed as uncorrelated Z(N) vortices. We also compare to the expectation value of the Z(N_c) part of the loop; thus, for two colors we compute

$$W_M^{Z(2)}(R) = \left\langle \operatorname{sgn} \operatorname{tr} \mathcal{P} \exp\left(ig \oint dx^i A^i\right)\right\rangle$$
(2)

where sgn() denotes the sign function.

The field in the forward light cone immediately after a collision⁴⁾, at proper time $\tau \equiv \sqrt{t^2 - z^2} \rightarrow +0$, is given by $A^i = \alpha_1^i + \alpha_2^i$. In turn, before the collision the individual fields of projectile and target are 2d pure gauges,

$$\alpha_m^i = \frac{i}{g} U_m \,\partial^i U_m^\dagger \quad , \quad \partial^i \alpha_m^i = g \rho_m \; , \tag{3}$$

where m = 1, 2 labels projectile and target, respectively, and U_m are SU(N) matrices. Note that for a non-Abelian gauge group, the sum A^i of two pure gauges is not a pure gauge, so $W_M \neq 1$.

The large-x valence charge density ρ is a random variable. For a large nucleus, the effective action describing color charge fluctuations is quadratic²⁾, $S_{\text{eff}} = \rho^a(\mathbf{x})\rho^a(\mathbf{x})/2\mu^2$. The variance of color charge fluctuations determines the saturation scale $Q_s^2 \sim g^4\mu^2$. The

brackets in eq. (1) denote an average over the fluctuating color charges $\rho_1(\mathbf{x})$, $\rho_2(\mathbf{x})$ of the two charge sheets corresponding to projectile and target, respectively.

Fig. 1. Expectation value⁵⁾ of the magnetic flux loop right after a collision of two nuclei (time $\tau = +0$) as a function of its area $A' \equiv A Q_s^2$. Symbols show numerical results for SU(2) Yang-Mills on a 4096² lattice; the lattice spacing is set by $g^2 \mu_L = 0.0661$. The lines represent fits over the range $4 \ge A' \ge 2$.

In fig. 1 we show numerical results for W_M immediately after a collision. It exhibits area law behavior for loops larger than $A \gtrsim 2/Q_s^2$. The corresponding "magnetic string tension" is $\sigma_M/Q_s^2 = 0.12(1)$. The area law indicates uncorrelated magnetic flux fluctuations through the Wilson loop and that the area of magnetic vortices is rather small, their radius being on the order of $R_{\rm vtx} \sim 0.8/Q_s$. We do not observe a breakdown of the area law up to $A \sim 4/Q_s^2$, implying that vortex correlations are small at such distance scales. Also, restricting to the Z(2) part reduces the magnetic flux through small loops but σ_M is comparable to the full SU(2) result.

References

- 1) A. H. Mueller, Nucl. Phys. B 558, 285 (1999).
- L. D. McLerran and R. Venugopalan, Phys. Rev. D 49, 2233 (1994), Phys. Rev. D 49, 3352 (1994);
 Y. V. Kovchegov, Phys. Rev. D 54, 5463 (1996).
- 3) D. Kharzeev, A. Krasnitz and R. Venugopalan, Phys. Lett. B 545, 298 (2002); R. J. Fries, J. I. Kapusta and Y. Li, nucl-th/0604054; T. Lappi and L. McLerran, Nucl. Phys. A 772, 200 (2006).
- A. Kovner, L. D. McLerran and H. Weigert, Phys. Rev. D 52, 6231 (1995); Phys. Rev. D 52, 3809 (1995).
- A. Dumitru, Y. Nara and E. Petreska, Phys. Rev. D 88, 054016 (2013).

[†] Condensed from the article in Phys. Rev. D, Vol. 88, 054016 (2013)

^{*1} Department of Natural Sciences, Baruch College (CUNY)

^{*&}lt;sup>2</sup> RIKEN Nishina Center