
Ⅱ-5. Hadron Physics (Theory)

- 108 -

RIKEN Accel. Prog. Rep. 47 (2014)

Spatial Wilson loops in high-energy heavy-ion collisions

A. Dumitru∗1,∗2

Collisions of heavy ions at high energies provide op-
portunity to study non-linear dynamics of strong QCD
color fields1). The field of a very dense system of color
charges at rapidities far from the source is determined
by the classical Yang-Mills equations with a recoilless
current along the light cone2). It consists of gluons
characterized by a transverse momentum pT on the
order of the density of valence charges per unit trans-
verse area Q2

s; this saturation momentum scale sepa-
rates the regime of non-linear color field interactions at
pT <∼ Qs or distances r >∼ 1/Qs from the perturbative
regime at pT � Qs.
Right after the impact strong longitudinal chromo-

magnetic fields Bz ∼ 1/g develop due to the fact that
the individual projectile and target fields do not com-
mute3). They fluctuate according to the random local
color charge densities of the valence sources. Here we
show that magnetic loops

WM (R) =
1

Nc

〈
trP exp

(
ig

∮
dxiAi

)〉
(1)

effectively exhibit area law scaling, WM (R) ∼ e−σ πR2

,
and we compute the magnetic string tension σ. Fur-
thermore, we argue that at length scales ∼ 1/Qs the
field configurations might be viewed as uncorrelated
Z(N) vortices. We also compare to the expectation
value of the Z(Nc) part of the loop; thus, for two col-
ors we compute

W
Z(2)
M (R) =

〈
sgn trP exp

(
ig

∮
dxiAi

)〉
(2)

where sgn() denotes the sign function.
The field in the forward light cone immediately after

a collision4), at proper time τ ≡
√
t2 − z2 → +0, is

given by Ai = αi
1 + αi

2. In turn, before the collision
the individual fields of projectile and target are 2d pure
gauges,

αi
m =

i

g
Um ∂iU †

m , ∂iαi
m = gρm , (3)

where m = 1, 2 labels projectile and target, respec-
tively, and Um are SU(N) matrices. Note that for
a non-Abelian gauge group, the sum Ai of two pure
gauges is not a pure gauge, so WM �= 1.

The large-x valence charge density ρ is a random
variable. For a large nucleus, the effective action de-
scribing color charge fluctuations is quadratic2), Seff =
ρa(x)ρa(x)/2µ2. The variance of color charge fluctua-
tions determines the saturation scale Q2

s ∼ g4µ2. The
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brackets in eq. (1) denote an average over the fluctuat-
ing color charges ρ1(x), ρ2(x) of the two charge sheets
corresponding to projectile and target, respectively.

Fig. 1. Expectation value5) of the magnetic flux loop right

after a collision of two nuclei (time τ = +0) as a func-

tion of its area A′ ≡ AQ2
s. Symbols show numerical

results for SU(2) Yang-Mills on a 40962 lattice; the lat-

tice spacing is set by g2µL = 0.0661. The lines represent

fits over the range 4 ≥ A′ ≥ 2.

In fig. 1 we show numerical results for WM imme-
diately after a collision. It exhibits area law behavior
for loops larger than A >∼ 2/Q2

s. The corresponding
“magnetic string tension” is σM/Q2

s = 0.12(1). The
area law indicates uncorrelated magnetic flux fluctu-
ations through the Wilson loop and that the area of
magnetic vortices is rather small, their radius being
on the order of Rvtx ∼ 0.8/Qs. We do not observe a
breakdown of the area law up to A ∼ 4/Q2

s, imply-
ing that vortex correlations are small at such distance
scales. Also, restricting to the Z(2) part reduces the
magnetic flux through small loops but σM is compara-
ble to the full SU(2) result.
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Bose-Einstein Condensation in “the very hot”

J. Liao∗1,∗2

In relativistic heavy ion collisions, a highly occupied
gluonic matter is created shortly after initial impact,
which is in a non-thermal state and often referred to
as the glasma. How the glasma evolves quickly to-
ward an emergent hydrodynamic behavior remains a
significant challenge for theory as well as phenomenol-
ogy. Recently there has been important progress in
understanding the pre-equilibrium evolution using the
kinetic theory description, in a highly overpopulated
regime1–3) where the system is weakly coupled yet
strongly interacting with the possibility of a transient
BEC during the course of thermalization.

Inspired by the Color Glass Condensate descrip-
tion of the initial conditions, the gluon distribution
in the glasma is schematically given by f(p ≤ Qs) =
f0 , f(p > Qs) = 0 with Qs the saturation scale. One
may introduce the overpopulation parameter nϵ−3/4

which is directly related to the ratio between inter-
particle distance d and typical de Broglie wavelength
λ, i.e. nϵ−3/4 ∼ (λ/d)α thus measuring the degrees of
quantum coherence: when nϵ−3/4 → ô(1) then λ → d
and one expects BEC to occur. In the glasma distribu-

tion n0ϵ
−3/4
0 = f

1/4
0

25/4

3π1/2 and, compared with thermal

case n ϵ−3/4|SB = 303/4 ζ(3)
π7/2 ≈ 0.28, the system be-

comes overpopulated when f0 > f c
0 ≈ 0.154. One thus

see in the glasma with f0 = 1/αs, even with rather
modest weak coupling αs ≃ 0.3 the system is highly
overpopulated and will develop Bose condensate.

So how does the thermalization proceed in such a
overpopulated glasma? Numerical solutions reported
in 2) suggest two generic features. First, two cascades
in momentum space will quickly develop: a particle
cascade toward the IR momentum region that quickly
populates the soft momentum modes to high occupa-
tion, and a energy cascade toward the UV momentum
region that spreads the energy out. As a consequence
a high occupation number at IR is quickly achieved,
leading to the second interesting feature: an almost in-
stantaneous local “equilibrium” form for the distribu-
tion near the origin p⃗ → 0: f∗(p → 0) = 1

e(p−µ∗)/T∗−1
.

In the overpopulated case the IR cascade persists to
drive the local thermal distribution near p = 0 to in-
crease rapidly in a self-similar form (see Fig.1 upper).
The associated negative local “chemical potential” is
driven to approach zero, i.e. (−µ∗) → 0+ and ulti-
mately vanishes in a finite time, marking the onset of
the condensation. The approaching toward onset is
well described by a scaling behavior: |µ∗| = C(τc−τ)η

with a universal exponent η ≈ 1 for varied values of
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Fig. 1. Local thermal form (upper) of f(p → 0) and the

vanishing of local chemical potential µ∗ → 0 (lower).

f0 > f c
0 . Such general link from initial overpopulation

to the onset of BEC in a finite time with a scaling
behavior appears to be very robust against different
choices of initial distribution shapes and possible initial
anisotropy, including longitudinal expansion, as well as
adding finite medium-generated mass.

There is one particularly important issue related to
the role of inelastic processes. One may even won-
der if such onset (manifested as the development of
an infrared singularity in the kinetic evolution) would
happen anymore. To answer this, one needs to study
the kinetic evolution including both processes: a first
attempt has been done, recently in 3). Contrary to
usual expectation, it is found that the inelastic pro-
cess has two effects: globally changing (mostly reduc-
ing) the total particle number, while locally at small p
always filling up the infrared regime extremely quickly.
This latter effect is found to significantly speed up the
emergence of local thermal form with vanishing local
“chemical potential” and catalyzes the onset of Bose
condensation to occur faster (as compared with the
purely elastic case) in the overpopulated glasma.
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