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Lorentz invariant CPT violation†

M. Chaichian,∗1 K. Fujikawa,∗2 and A. Tureanu∗1

A Lorentz invariant CPT violation, which may be
termed as the long distance CPT violation in contrast
to the familiar short distance CPT violation, has been
recently proposed1). This scheme is based on the non-
local interaction vertex and characterized by the in-
frared divergent form factor. We show that Lorentz
covariant T ⋆-product is consistently defined and the
energy-momentum conservation is preserved in pertur-
bation theory if the path integral is suitably defined for
this non-local theory, although unitarity is generally
lost. It is illustrated that T-violation is realized in the
decay and formation processes. It is also argued that
the equality of masses and decay widths of the parti-
cle and anti-particle is preserved if the non-local CPT
violation is incorporated either directly or as perturba-
tion by starting with the conventional CPT-even local
Lagrangian. However, we also explicitly show that the
present non-local scheme can induce the splitting of
particle and anti-particle mass eigenvalues if one con-
siders a more general class of Lagrangians.

We study the specific realization of CPT violation

L = ψ̄(x)[iγµ∂µ − M ]ψ(x) +
1

2
∂µϕ(x)∂µϕ(x)

− 1

2
m2ϕ(x)2 + gψ̄(x)ψ(x)ϕ(x) − V (ϕ)

+ g1ψ̄(x)ψ(x)

∫
d4yθ(x0 − y0)δ((x − y)2 − l2)ϕ(y)

as a main theoretical model. This Lagrangian is for-
mally hermitian and the term with a small real g1 and
the step function θ(x0 − y0) stands for the CTP and
T violating interaction; l is a real constant parameter.
It is interesting that the CPT and T violating term is
real in the present case. We define the interaction part

LI = gψ̄(x)ψ(x)ϕ(x)

+ g1ψ̄(x)ψ(x)

∫
d4yθ(x0 − y0)δ((x − y)2 − l2)ϕ(y).

We treat this highly non-local Lagrangian in path in-
tegral as described in2).Namely

⟨0,+∞|0,−∞⟩J

=

∫
Dψ̄DψDϕ exp{i

∫
d4x[L0 + LI + LJ ]}

with the source term LJ = ψ̄(x)η(x) + η̄(x)ψ(x) +
ϕ(x)J(x), and one may generate Green’s functions in
a power series expansion of perturbation as
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(i)n⟨T ⋆ϕ(x1)..ϕ(xN )

∫
d4y1LI(y1)..

∫
d4ynLI(yn)⟩.

We use the T ⋆-product which is essential to make the
path integral on the basis of Schwinger’s action prin-
ciple consistent2).

The present way to introduce CPT violation is based
on an extra form factor in momentum space as

∫
d4xψ̄(x)ψ(x)

∫
d4yθ(x0 − y0)δ((x − y)2 − l2)ϕ(y)

=
∫

dp1dp2dq(2π)4δ4(p1 + p2 + q)ψ̄(p1)ψ(p2)f(q)ϕ(q)

with

f(q) ≡
∫

d4zθ(z0)δ(z2 − l2)eiqz

namely, CPT violation is realized by a form factor f(q)
which becomes complex for time-like momentum. The
ordinary local field theory is characterized by f(q) = 1.
The above form factor is infrared divergent, and it is
quadratically divergent in the present example. This
infrared divergence arises from the fact that we can-
not divide Minkowski space into (time-like) domains
with finite 4-dimensional volumes in a Lorentz invari-
ant manner. The Minkowski space is hyperbolic rather
than elliptic. CPT symmetry is related to the funda-
mental structure of Minkowski space, and thus it is
gratifying that its possible breaking is also related to
the basic property of Minkowski space.

Based on this setting, we confirmed the followings:
1. The present model produces T-violation in the de-
cay ϕ → ψ + ψ̄ and its reversed formation process
ψ + ψ̄ → ϕ.
2. The equality of masses and decay widths of the
particle and anti-particle is preserved if the non-local
CPT violation is incorporated either directly or as per-
turbation by starting with the conventional CPT-even
local Lagrangian.

Some of the more realistic applications of the present
CPT violation scheme to the particle-antiparticle mass
splitting, inparticular, the neutrino-antineutrino mass
splitting in the standard model have been already di-
cussed elsewhere3,4).
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Conditionally valid uncertainty relations†
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It is shown that the well-defined unbiased measure-
ment or disturbance of a dynamical variable is not
maintained for the precise measurement of the con-
jugate variable, independently of uncertainty relations.
The conditionally valid uncertainty relations on the ba-
sis of those additional assumptions, which include most
of the familiar Heisenberg-type relations, thus become
singular for the precise measurement. We clarify some
contradicting conclusions in the literature concerning
those conditionally valid uncertainty relations: The
failure of a naive Heisenberg-type error-disturbance
relation and the modified Arthurs-Kelly relation in
the recent spin measurement is attributed to this
singular behavior. The naive Heisenberg-type error-
disturbance relation is formally preserved in quantum
estimation theory, which is shown to be based on the
strict unbiased measurement and disturbance, but it
leads to unbounded disturbance for bounded operators
such as spin variables. In contrast, the Heisenberg-
type error-error uncertainty relation and the Arthurs-
Kelly relation, as conditionally valid uncertainty rela-
tions, are expected to be consistently maintained.

A recent experiment1), which invalidated a naive
Heisenberg-type error-disturbance relation2), revived
our interest in the subject of uncertainty rela-
tions. In contrast to the naive Heisenberg-type error-
disturbance relation, the relations which are based on
only the positive definite Hilbert space and natural
commutator algebra are expected to be valid as long
as quantum mechanics is valid, namely, ”universally
valid”2)3). It was recently shown4) that all the known
universally valid uncertainty relations are derived from
Robertson’s relation written for suitable combinations
of operators. It is important to distinguish the uncer-
tainty relations which are universally valid from those
relations based on additional assumptions and thus
only conditionally valid.

In this paper, we analyze the implications of the as-
sumptions of unbiased joint measurements or unbiased
measurement and disturbance which are widely used
in the formulation of uncertainty relations5). We clar-
ify the origin of quite different conclusions concerning
the conditionally valid Heisenberg-type relations in the
measurement operator formalism2) and in the quan-
tum estimation theory6) which is a new approach to
uncertainty relations.

We first note that the well-defined unbiased mea-
surement or disturbance of a quantum mechanical op-
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erator is not maintained for the precise measurement
of the conjugate operator in the framework of the or-
dinary measurement theory. For example, those as-
sumptions lead to

⟨[Mout, Nout]⟩ = ⟨[A,B]⟩,
⟨[Mout, Bout]⟩ = ⟨[A, B]⟩. (1)

We work in the Heisenberg picture and the vari-
ables without any suffix stand for the initial vari-
ables; A, B stand for dynamical variables and M, N
stand for the corresponding measurement operators,
respectively. The variables Mout = U†(1 ⊗ M)U and
Nout = U†(1 ⊗ N)U stand for the variables after the
measurement, and Bout = U†(B ⊗ 1)U stands for the
variable B after the measurement of A. By assump-
tion, ⟨[Mout, Nout]⟩ = ⟨[Mout, Bout]⟩ = 0, and thus
relations in (1) are contradictions.

The conditionally valid uncertainty relation such as
naive Heisenberg-type error-disturbance relation1)2),

σ(Mout − A)σ(Bout − B) ≥ 1

2
|⟨[A,B]⟩|, (2)

which is based on the assumptions of unbiased mea-
surement and disturbance, thus fails if one formulates
the relation in terms of well-defined bounded oper-
ators. The naive Heisenberg-type error-disturbance
relation is formally preserved in quantum estimation
theory, but the disturbance of the bounded operator
is forced to be singular and divergent for the precise
measurement of the conjugate variable6).

In contrast, the Heisenberg-type error-error uncer-
tainty relation

σ(Mout − A)σ(Nout − B) ≥ 1

2
|⟨[A,B]⟩|, (3)

and the Arthurs-Kelly relation,

σ(Mout)σ(Nout) ≥ |⟨[A,B]⟩|, (4)

as conditionally valid uncertainty relations, are ex-
pected to be consistently maintained.
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