RIKEN Accel. Prog. Rep. 47 (2014)

II-B. Particle Physics

Heisenberg uncertainty relation revisited’

K. Fujikawa*!

Kennard and Robertson formulated the uncertainty
relation which appears in any textbook on quantum
mechanics

o(A)o(B) > 1|(1A.B)|. (1)
Another important development in the history of un-
certainty relations is the analysis of Arthurs and
Kelly"). They introduce the measuring apparatus M
for A, and N for B, respectively, with [M, N] = 0. The
notion of unbiased measurement is important in their
analysis, which is defined by

(M) = (A) (2)

for any state of the system 1 in the total Hilbert space
of the system and apparatus 1) ®|£) in the Heisenberg
picture. Here variables M and N (and also A and B)
stand for the variables before the measurement, and
the variable M°* = Ut MU stands for the apparatus
M after measurement.

Traditionally, it has been common to take the rela-
tion?)

o(M — A)o(B* ~ B) > |{[A, B) (3)
as the naive Heisenberg error-disturbance relation; we
use the adjective "naive” since no reliable derivation
of this relation is known. An elegant experiment of
spin measurement by J. Erhart et al.?), invalidated
the naive Heisenberg-type error-disturbance relation,
which initiated the recent activities on uncertainty re-
lations.

It is shown that all the uncertainty relations are de-
rived from suitably defined Robertson’s relation®. We
start with Robertson’s relation

o(M°" — A)o (B — B)
> LM — 4, B B)
and use the triangle inequality
o(M°" — A)o(B°"* — B)
> (A, B - (14, B - B)

—[{[M" = A, B}, (5)

where we used [M°“t, B°“!] = [M, B] = 0. Using the
variations of Robertson’s relation, we obtain?)
o(M°" — A)a(B°"" — B) + o(M°"* — A)o(B)
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+o(A)o(B™ - B) = S [{[A, B])l,

N =

and®

{o(M°" — A) + o(A) Yo (B — B) + o(B)}

> [([A, B])- (7)

We thus conclude that all the known universally valid
relations are the secondary consequences of Robert-
son’s relation. Also, the saturation of Robertson’s re-
lation is a mecessary condition of the saturation of uni-
versally valid uncertainty relations. If one assumes the
unbiased measurement and disturbance, one obtains
(3).

By assuming unbiased joint measurements, we con-
clude®

([4, B]) = ([M°,N*"']) = 0 (8)

which is a contradiction since ([4, B]) # 0 in general.
Similarly, one concludes®

([4, B]) = ([M°", B™"]) = 0 (9)

if one assumes the precise measurement of A and the
unbiased disturbance of B which implies (B°“* — B)
0 for all . Here B°** = UT(B ® 1)U stands for the
variable B after the measurement of A. Note that
[Mout’Bout] — []\4’7 B] =0.

We interpret the algebraic inconsistency (9) as an
indication of the failure of the assumption of unbiased
disturbance of B for the precise projective measure-
ment of A, if all the operators involved are well-defined.
Thus the naive relation (3) fails. On the other hand,
the Heisenberg error-error relation

1
(M — A)e(N**" = B) = S|([A, B])| (10)
and the Arthurs-Kelly relation
o(M")o(N") = |[([A, B])| (11)

are expected to be valid as conditionally valid uncer-
tainty relations. In this case the apparatus variable
N°¥ becomes singular for the precise measurement of
A, namely, M°“ — A — 0 if the unbiasedness condition
(N°out — B) = 0 is imposed.
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