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Image reconstruction algorithm for gamma-ray inspection of rotating objects 
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We develop a new method to determine the spatial 
distribution of positron-emitting radioisotopes (RIs) on 
rotating objects and construct a prototype system. The 
details of the principle and the prototype system based on 
this method are described elsewhere1). This method is based 
on the same principle as the medical positron emission 
tomography (PET) systems in which projection data from 
all angles are collected. In the PET system, gamma-ray 
detectors are placed in a circular manner around a stationary 
object, or the gamma-ray detectors rotate around the object 
in order to collect projection data. In this method, a pair of 
gamma-ray detectors are placed in a stationary position and 
the object being imaged is rotated.  

Here, we present the image reconstruction algorithm of 
the prototype system. The most conventional image 
reconstruction algorithm in PET is filtered back-projection 
(FBP) 2). Projections from all angles are back-projected 
onto and overlaid in the image plane using the inverse 
Radon transform to reconstruct the image. Then, an 
appropriate image filter is applied to deblur the image. 

An alternative to the FBP is the maximum likelihood – 
expectation maximization (ML–EM) algorithm3, 4). We 
assume a two-dimensional distribution (x,y) of RI (image), 
and the projection data p(r,) at an angle  from the y-axis 
and at a distance r from the center. ML–EM is an iterative 
method. The iteration starts with an arbitrary image that is 
updated gradually as 
 
j

n = (j
n-1 / Σ cij)(Σ (cij pi / Σ cikk
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where j

n is the j-th pixel value in the image  of the n-th 
iteration, pi is the value at the i-th position in the projection 
p, and cij is the probability that a gamma-ray emitted from 
the j-th pixel position is counted at the i-th position in the 
projection (see Fig. 1). 

 
 
 
 
 
 
 

 
Fig. 1. Schematic illustration of ML–EM 

 
At each iteration, the projection of the current estimate 

image is calculated and compared with the actual projection. 
Then, the difference between the estimated and actual 
projections is back-projected and used to update the current 
estimate image. 
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Thus, Equation 1 reads as follows. First, the projection of 
the current estimate image is calculated (k cikk

n-1). 
Second, the ratio of the actual projection to the estimated 
projection is calculated (pi / k cikk

n-1). Third, the ratio is 
back-projected to the image coordinate (1 / i cij )(i (cij pi / 
k cikk

n-1)). Finally, the back-projected ratio is multiplied 
by the current estimate image (j

n-1 / i cij)(i (cij pi / k 
cikk

n-1)). In the prototype system, the iteration requires 99 
steps from the initial uniform image to obtain the current 
estimate image. 

ML–EM is advantageous over FBP for wear diagnosis of 
mechanical parts in that the image values are all non- 
negative, the signal to noise ratio is higher, and there are 
less linear artifacts (see arrows in Fig. 2) around strong RI 
sources in the image. These advantages are important for 
the easy detection of weak sources near strong sources. 
Further, ML–EM is more suitable for quantitative 
evaluation because the sum of the image values is preserved 
during the iteration and the gamma-ray attenuation in the 
machine and collimators can be implemented in cij. 

Figure 2 shows a comparison of the FBP and ML–EM 
images. The FBP image was obtained using MATLAB 
iradon. The ML-EM image is based on an in-house 
program. 

Fig. 2. Comparison of the FBP (left) and ML–EM (right) 
images (top) and their projections (bottom). The color maps 
are scaled and optimized for individual images. 
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