Lithium-ion diffusion in novel battery materials

J. Sugiyama,^{*1} H. Nozaki,^{*1} M. Harada,^{*1} Y. Higuchi,^{*1} I. Umegaki,^{*1} K. Mukai,^{*1} M. Månsson,^{*2} and

I. Watanabe^{*3}

Diffusion coefficient of Li^+ ions (D_{Li}) in solids is usually evaluated by ⁷Li-NMR.¹) However, for materials containing magnetic ions, Li-NMR provides very limited information on $D_{\rm Li}$, because of the effect of electron spins on the spin-lattice relaxation rate $(1/T_1)$. $^{(2,3)}$ Note that positive electrode materials of Li-ion batteries all include transition metal ions to compensate charge neutrality during the Li⁺ intercalation and deintercalation reaction. On the contrary, μ^+ sees an internal magnetic field caused by both electrons and nuclei in a zero field (ZF). Thus, μ^+ SR extracts the nuclear field even in such positive electrode materi als^{4} by combining with weak longitudinal field (LF) measurements.⁵⁾ For the positive electrode materials, since Li ions are known to be more mobile than μ^+ due to a strong μ^+ -O bond, the hopping rate (ν) estimated by μ^+ SR reflects the dynamics of the Li ions.^{4,6)}

A solid solution system between LiCoO_2 and LiNiO₂, i.e. $\text{Li}(\text{Co}_{1-x}\text{Ni}_x)\text{O}_2$ in the rhombohedral symmetry with space group $R\overline{3}m$ is widely used in commercial Li-ion batteries. According to the previous experiment on $\text{Li}(\text{Co}_{1-x}\text{Ni}_x)\text{O}_2$ with x = 0, 0.33, 0.67, and 1, ν above ambient T drastically increased with increasing x. Since the $\nu(T)$ curve for the x = 0.67sample is clearly different from that for LiNiO₂, we have measured ZF- and LF- spectra for the samples with x = 0.85, 0.90, and 0.95.

Figure 1 shows the T dependences of the field distribution width (Δ) and ν for the x = 0.67 - 1 samples. For all the samples, as T increases from 50 K, Δ decreases linearly up to ~ 250 K, then looks to be Tindependent until ~ 400 K, and finally decreases with further increasing T. Here, Δ is mainly determined by the nuclear field of Li, because μ^+ locates at the vicinity of the O²⁻ ion with $d_{\mu-O} = 1$ Å, but not in the Co_{1-x}Ni_xO₆ octahedron. As a result, Δ is not sensitive to x. On the other hand, for the present three samples, ν increases with T until 225 K, then decreases with T until 450 K, and then increases again with T.

Note that a stoichiometric LiNiO₂ has never been obtained by a solid state reaction technique. A small amount of Ni ions are always located in the Li plane⁷⁾ due to the similarity in ionic radii between Li⁺ and Ni³⁺ (see Fig. 2). Thus, the correct formula of LiNiO₂ is $(\text{Li}_{1-y}^+\text{Ni}_y^{2+})(\text{Ni}_{1-y}^{3+}\text{Ni}_y^{2+})O_2$ with $y \leq 0.02$. The Ni ions in the Li plane suppress Li-diffusion.⁶⁾ But, Co substitution for Ni is known to reduce y.⁸⁾ Thus, it is expected that Li-diffusion increases with the Co con-

Fig. 1. Temperature dependences of Δ and ν for $\text{LiCo}_{1-x}\text{Ni}_x\text{O}_2$ with x = 0.67, 0.85, 0.90, 0.95, and 1.

Fig. 2. Crystal structure of $LiNiO_2$.

tent, against to the present result. In order to further understand the diffusion nature, it is highly required to investigate the Li-deficient samples, which is prepared by the Li⁺ deintercalation reaction, with μ^+ SR, because the direct jump of Li⁺ from the regular site to the nearest deficient site is predominant for Li-diffusion.

References

- P. Heitjans and S. Indris, J. Phys.: Condens. Matter, 15, R1257 (2003).
- 2) C. P. Grey and N. Dupré, Chem. Rev. 104, 4493 (2004).
- 3) K. Nakamura, Solid State Ionics **121**, 301 (1999).
- 4) J. Sugiyama et al., Phys. Rev. Lett. 103, 147601 (2009).
- 5) R. S. Hayano et al., PRB 20, 850 (1979).
- 6) J. Sugiyama et al., Phys. Rev. B 82, 224412 (2010).
- 7) J. E. Reimers et al., Solid State Chem. 102, 542 (1993).
- 8) T. Ohzuku et al., Electrochim. Acta 38, 1159 (1993).

^{*1} Toyota Central Research and Development Labs., Inc.

^{*2} EPFL & PSI, Switzerland

^{*&}lt;sup>3</sup> RIKEN Nishina Center