Recovery of ²⁴⁸Cm material from mixed Cm/Gd target

M. Murakami *1,*2 and H. Haba *1

In the chemical experiments on superheavy elements (SHEs), the lighter homologue elements in the periodic table are simultaneously produced, and their chemical behaviors are compared to those of SHEs under identical experimental conditions. For this purpose, a mixed ²⁴⁸Cm/Gd target deposited on a thin metallic backing foil has been often used.^{1,2)} The target as well as the backing material are gradually damaged by the irradiation with the intense heavy-ion beams. Since the available amount of ²⁴⁸Cm is limited, its recovery, which involves purification from the used target, is essential to produce a new target.

Bis(2-ethylhexyl)phosphoric acid (HDEHP) is one of the widely used extractants for separating lanthanide ions.³⁾ Separation of lanthanide and actinide through extraction chromatography using an HDEHP-laden resin has been studied.^{4,5} Using the HDEHP resin, one can perform stepwise separation of lanthanide and actinide elements by simply changing the concentration of the HNO_3 eluents. The distribution coefficients $(K_{\rm d})$ of these elements strongly depend on the HNO₃ concentration: The K_d values for +3 ions are inverse third power dependent on the mean activity of the hydrogen ion.⁴⁾ Therefore, in this work, we investigated several schemes to effectively separate Cm and Gd with the HDEHP resin using a multitracer of lanthanide elements. Further, we separated the ²⁴⁸Cm material from ^{nat}Gd with the optimized scheme.

The commercially available Ln Resin (Eichrom), the HDEHP-laden hydrophobic resin with the particle size of 100–150 μ m, was packed into a polyethylene column (5 mm i.d. \times 50 mm height; column volume: ≈ 1 mL). The multitracer was produced by bombarding a ^{nat}Hf target with a 135-MeV/nucleon ¹⁴N beam from the RIKEN Ring Cyclotron. After the irradiation, the rare earth elements were separated from the target material by an establised procedure, detailed in Ref. 6. The multitracer including ¹³³Ba, ¹³⁹Ce, ¹⁴³Pm, ¹⁴⁵Sm, and 153 Gd in 0.1 M HNO₃ was stocked in a polypropylene (PP) tube. The $K_{\rm d}$ values are reported to be in the order Ba \ll Ce < Cm < Pm < Sm < Gd in the Ln Resin-HNO_3 system.⁵⁾ After the conditioning of the column with 3.0 mL of 0.1 M HNO₃ solution, 1 mL of the stock solution was loaded onto the column. 4 mL of 0.1 M HNO_3 was then fed onto the column as a first eluent. According to the reported $K_{\rm d}$ values, ⁵⁾ most of the +1 and +2 metal ions such as ¹³³Ba elute in this fraction. As a second eluent, 0.2-0.5 M HNO_3 solutions were fed until ¹⁴³Pm was completely eluted from the column. Finally, 6 mL of 1.0 M $\rm HNO_3$

was fed to elute ¹⁵³Gd completely. The flow rate was 230–240 μ L/min at room temperature. Each 1 mL of the effluent was collected in a separate PP tube and subjected to γ -ray spectrometry at fixed geometry.

Figures 1(a)-(d) show the elution curves of the multitracer with $0.2, 0.3, 0.4, and 0.5 M HNO_3$ as the second eluent. 133 Ba was eluted with 5 mL of 0.1 M HNO₃ with a recovery of $100.3 \pm 2.5\%$. 30 mL of 0.2 M HNO₃ (Fig. 1(a)) was used to elute 139 Ce and then 143 Pm, as expected from the difference in the $K_{\rm d}$ values.⁵⁾ ¹⁴⁵Sm and 153 Gd were not eluted in these fractions. Owing to the increase in the concentration of the second eluent, the peaks of the elution curves of 139 Ce and 143 Pm get shifted to lower volumes and approach to each other. In the case of 0.5 M HNO₃, $6.2 \pm 0.6\%$ of ¹⁵³Gd was eluted until ¹³⁹Ce was completely eluted. Since Cm is expected to be found between Ce and Pm from the order of the $K_{\rm d}$ values,⁵⁾ Cm and Gd can be separated with the schemes shown in Fig. 1(a)-(c). However, the scheme shown in Fig. 1(a) takes a large amount of eluent, and in the case of 0.4 M HNO₃, the condition for separation is stricter than that in the case of 0.2 M and 0.3 M HNO_3 , owing to the close peaks of the elution curves. Therefore, we selected the scheme in Fig. 1(b)for the separation of 248 Cm and nat Gd.

By applying the scheme of Fig. 1(b) to the purification of 830- μ g ²⁴⁸Cm target material containing ^{nat}Gd (about 10 wt%), 99.3 ± 4.1% of ²⁴⁸Cm was collected in the fraction of the 12-mL 0.3 M HNO₃ solution.

Fig. 1. Elution curves of 133 Ba, 139 Ce, 143 Pm, 145 Sm, and 153 Gd. The concentrations of the second eluents are (a) 0.2 M, (b) 0.3 M, (c) 0.4 M, and (d) 0.5 M.

References

- 1) K. Tsukada et al.: Radiochim. Acta 97, 83 (2009).
- 2) Z. J. Li et al.: Radiochim. Acta 100, 157 (2012).
- S. Cotton: Lanthanide and Actinide Chemistry (John Wiley & Sons, 2006).
- E. P. Horwitz et al.: J. Inorg. Nucl. Chem. **31**, 3255 (1969).
- E. P. Horwitz and C. A. A. Bloomquist: J. Inorg. Nucl. Chem. 37, 425 (1975).
- Y. Ezaki et al.: J. Nucl. Radiochem. Sci. 10 Suppl., 123 (2009) (In Japanese).

^{*1} RIKEN Nishina Center

^{*2} Department of Chemistry, Niigata University