Charge-state determination for new isotopes near the proton drip-line

Y. Ohkoda, ^{*1,*3} T. Kubo, ^{*1} N. Fukuda, ^{*1} N. Inabe, ^{*1} H. Takeda, ^{*1} D. Kameda, ^{*1} H. Suzuki, ^{*1} K. Yoshida, ^{*1} K. Kusaka, ^{*1}

K. Tanaka,^{*1} Y. Yanagisawa,^{*1} M. Ohtake,^{*1} H. Sato,^{*1} Y. Shimizu,^{*1} H. Baba,^{*1} M. Kurokawa,^{*1} K. Ieki,^{*1,*2} D. Murai,^{*1,*2}

N. Iwasa,^{*1,*3} A. Chiba,^{*1,*3} E. Ideguchi,^{*4} S. Go,^{*1,*5} R. Yokoyama,^{*5} T. Fujii,^{*5} D. Nishimura,^{*1,*6} H. Nishibata,^{*1,*7}

S. Momota,^{*1,*8} M. Lewitowicz,^{*9} G. DeFrance,^{*9} I. Celikovic,^{*9} K. Steiger,^{*10} O. B. Tarasov,^{*1,*11} D. Bazin,^{*1,*11}

D. J. Morrissey, *1,*11 and B. M. Sherrill*1,*11

Particle identification (PID) based on the ΔE -TOF- $B\rho$ method, in which atomic number Z and mass-to-charge ratio A/Q are calculated from measured energy loss (ΔE), time of flight (TOF), and magnetic rigidity ($B\rho$), does not work well for isotopes whose A/Z value is close to an integer number, such as 2 or 3. This is because hydrogen-like and fully stripped events are very closely located in a Z versus A/Q PID plot. In these cases, measurement of total kinetic energy (TKE) is additionally needed to identify the charge state. We performed such TKE measurement to calculate the charge state number Q for medium heavy proton-rich isotopes with $A/Z \sim 2$.

The experiment was performed in December 2011 at RIBF using a ¹²⁴Xe beam at 345 MeV/nucleon. The BigRIPS separator¹⁾ was used to separate and identify produced isotopes, and was tuned for very proton-rich isotopes with Z = 30-45. The PID based on the ΔE -TOF- $B\rho$ method was made at the second stage of the BigRIPS separator.²⁾ The TKE measurement was made using a stack of eleven 1-mm-thick silicon detectors, placed downstream of the BigRIPS separator. The energy loss data from the silicon detectors were added to calculate the TKE. We calculated the A value from the TKE and TOF, and the Q value from the A/Q value obtained by the ΔE -TOF- $B\rho$ method.

The relative resolution achieved in the TKE measurement is 0.48% on average. The resulting Q resolution was calculated to be $\sigma = 0.25$ on average, which allows 4.0σ separation for $\Delta Q = 1$ in charge-state identification plot. We observed the dependence of Q resolution on the stopping range in the silicon stack detector. Figure 1 shows the Qresolution as a function of the stopping range of the isotopes, where some deterioration of the Q resolution is observed around a certain value of stopping range. This can be attributed to a thin dead layer on the surface of the silicon detectors. We expect that it is possible to improve the Q

- *4 Research Center for Nuclear Physics, Osaka University
- *5 Center for Nuclear Study, University of Tokyo
- *6 Department of Physics, Tokyo University of Science
- *7 Department of Physics. Osaka University
- *8 Kochi University of Technology
- *9 Grand Accelerateur National d'Ions Lourds
- ^{*10} Physik Department, Technische Universität München
- *¹¹ National Superconducting Cyclotron Laboratory, Michigan State University

resolution by selecting the stropping range according to the $B\rho$ measurement or by using silicon detectors whose dead layer thickness is significantly small.

We can select events of fully stripped isotopes from a Z versus Z-Q plot, where Z-Q gives the number of electrons. Figure 2 shows a Z versus A-2Q PID plot for the fully stripped events (Z-Q = 0). Here, the Z value is obtained from the ΔE -TOF- $B\rho$ method, while A-2Q is calculated using the A and Q values obtained in the present work. Note that for isotopes with $A/Z \sim 2$, the resolution of A-2Q is comparable to the A/Q resolution achieved by the ΔE -TOF- $B\rho$ method, because of the nature of error propagation.

As shown in Fig. 2, the present TKE measurement confirms the identification of four new isotopes, ^{81,82}Mo and ^{85,86}Ru, which we previously observed using the ΔE -TOF- $B\rho$ method.²⁾ This also confirms that the new isotopes are fully stripped.

Fig. 2 Z versus A-2Q particle identification plot for projectile fragments produced in the reaction ¹²⁴Xe+Be at 345 MeV/nucleon. References

- 1) T. Kubo et al.: Nucl. Instr. and Meth. B 204, 97 (2003).
- 2) H. Suzuki et al.: Nucl. Instr. and Meth. B 317, 756 (2013).

^{*1} RIKEN Nishina Center

^{*2} Department of Physics, Rikkyo University

^{*3} Department of Physics, Tohoku University