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Spin-orbit effects on pseudospin symmetry†
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Pseudospin symmetry (PSS)1,2) was introduced in
1969 to explain the near degeneracy between pairs of
nuclear single-particle states with the quantum num-
bers (n−1, l+2, j = l+3/2) and (n, l, j = l+1/2). They
are regarded as the pseudospin doublets with modified
quantum numbers (ñ = n − 1, l̃ = l + 1, j = l̃ ± 1/2).
Although this concept was introduced for more than 40
years ago, the origin of PSS and its breaking mecha-
nism in realistic nuclei have not been fully understood.
Specifically, determining whether its nature is pertur-
bative remains an unsolved problem.

Recently, we used the perturbation theory to inves-
tigate the symmetries of the Dirac Hamiltonian and
their breaking in realistic nuclei3), which provides a
clear and quantitative way for investigating the per-
turbative nature of PSS. On the other hand, super-
symmetric (SUSY) quantum mechanics can provide a
PSS-breaking potential without singularity, and natu-
rally interpret the unique feature that all states with
l̃ > 0 have their own pseudospin partners except for the
intruder states4). Then, the similarity renormalization
group (SRG) technique fills the gap between the per-
turbation calculations and the SUSY descriptions by
transforming the Dirac Hamiltonian into a diagonal
form and keeping every operator Hermitian5,6).
Therefore, understanding the PSS and its breaking

mechanism in a quantitative manner by combining the
SRG technique, SUSY quantum mechanics, and per-
turbation theory is considered promising.

Here, we highlight the PSS-breaking potentials
ṼPSO(r), which are derived from the Dirac equation
with the SRG and SUSY transformations.

In the upper panel of Fig. 1, the ṼPSO(r) obtained
without and with the spin-orbit (SO) term are shown
for the f̃ orbitals. These potentials show several
special features, which are crucial for understanding
the PSS: (i) They are regular functions of r. (ii)
Their amplitudes directly determine the sizes of re-
duced pseudospin-orbit (PSO) splittings ∆EPSO ≡
(Ej< − Ej>)/(2l̃ + 1) according to the perturbation
theory. (iii) Their shape, being negative at small ra-
dius but positive at large radius with a node at the
surface region, can explain the general tendency of
the PSO splittings becoming smaller with increasing
single-particle energies.

To identify the SO effects, the ṼPSO(r) obtained with
the SO term is further decomposed into the contribu-
tions of the indirect and direct SO effects, because the
former one represents the SO effects on ṼPSO(r) via the
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superpotentials, while the latter is the SO potential it-
self. Comparison with the result obtained without the
SO term shows that the indirect effect is small and
eventually results in less influence due to the cancel-
lation between the inner and outer regions. On the
other hand, the SO potential is always positive with a
peak at surface. It substantially raises the ṼPSO(r), in
particular for the surface region.

All of these properties are shown in the lower pan-
el of Fig. 1, in which ∆EPSO are shown as a function
of Eav = (Ej< + Ej>)/2. ∆EPSO match the ampli-

tudes of ṼPSO(r). The decreasing PSO splittings with
increasing single-particle energies is due to the special
shape of ṼPSO(r). The SO term reduces ∆EPSO sys-
tematically, and this effect can be understood now in
a quantitative manner.

Fig. 1. Upper panel: PSS-breaking potentials ṼPSO(r) ob-

tained with and without SO term. The former one is

decomposed into the indirect and direct the SO effects.

Lower panel: ∆EPSO vs Eav with and without the SO

term, where j<, j> stand for the l̃ ∓ 1/2 states.
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Shape evolution of giant resonances in Nd and Sm isotopes †
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A giant resonance (GR) is a typical high-frequency
collective mode of excitation in nuclei. Effects of nu-
clear deformation on GRs have been investigated both
experimentally and theoretically. Among them, the
deformation splitting of the isovector giant dipole res-
onance (GDR), due to different frequencies of oscil-
lations along the major and minor axes, is well es-
tablished. Emergence of a double-peak structure of
the photoabsorption cross section of 150Nd and 152Sm
clearly indicates the onset of the deformation in the
ground state. For the GRs with higher multipolar-
ity, although deformation splitting is less pronounced,
peak broadening has been observed. The detailed and
systematic investigations of GRs would give us unique
information on the shape transition in nuclei.

In contrast to low-energy modes of excitation, GRs
substantially reflect bulk nuclear properties. Thus,
their studies may provide information on nuclear mat-
ter. Although various macroscopic models have been
applied to GRs, a quantitative description of GRs re-
quires a microscopic treatment of nuclear response.
For heavy deformed open-shell nuclei, the leading the-
ory currently for this purpose is the quasiparticle-
random-phase approximation (QRPA) based on the
nuclear energy-density-functional (EDF) method. The
QRPA based on the deformed ground-state configura-
tion with superfluidity can treat a variety of excitations
in the linear regime.

We develop a new calculation code of the deformed
HFB and QRPA for use in the massively parallel com-
puters to examine the applicability of the Skyrme-
EDF-based QRPA to the excitation modes in heavy
deformed systems. Using this new parallelized code,
the deformation effects on the GRs in Nd and Sm iso-
topes are investigated. We perform numerical analy-
sis for GRs with a multipolarity L = 0 − 3 with both
isoscalar (IS) and isovector (IV) characters, and exam-
ine the incompressibility and the effective mass both
in spherical and deformed nuclei.

Figure 1 shows the strength distributions of IS
monopole and quadrupole excitations in the Sm iso-
topes. We discuss first the giant quadrupole resonance
(GQR). With an increase in the mass number, the peak
energy of the ISGQR becomes smaller. This is con-
sistent with the experiment on the systematic obser-
vation1),2). The K splitting, EK=2 − EK=0, for the
ISGQR is 2.8 MeV in 154Sm. This is consistent with
the experimental observation. Since the energy split-
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Fig. 1. Strength distributions (shifted) of (a) ISGMR and

(b) ISGQR in Sm isotopes.

ting associated with deformation is comparable to the
smearing parameter of 2 MeV, the deformation split-
ting, which is clearly visible in the photoabsorption
cross sections does not appear in the ISGQR.

Next, let us discuss the giant monopole resonance
(GMR). In the spherical nuclei, we can see a sharp
peak at around 15 MeV which is identified as the IS-
GMR. The ISGMR in deformed nuclei has a double-
peak structure. The higher-energy peak of the IS
monopole strength is identified as a primal ISGMR
and the lower-energy peak is associated with the cou-
pling to the Kπ = 0+ component of the ISGQR. The
lower peak of the ISGMR around 11 MeV is located
at the peak position of the Kπ = 0+ component of the
ISGQR.

For the ISGMR in 154Sm, the SkM* functional gives
the excitation energy, which is very close to the ob-
served value1). However, in 144Sm, the SkM* underes-
timates the observation, and the SLy4 gives the reason-
able energy. The present calculation suggests that the
nuclear-matter incompressibility corresponds to about
230 MeV, as deduced from the comparison of the GMR
excitation energy for 144Sm, and 210 MeV for 154Sm.
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