Competition between T=1 and T=0 pairing in pf shell nuclei with $N=Z^{\dagger}$

H. Sagawa,^{*1,*2} Y. Tanimura,^{*3} and K. Hagino^{*3}

The role of the neutron-proton isoscalar spin-triplet (T=0, S=1) pairing interaction in finite nuclei has been a topic of discussion for long.¹⁻³⁾ The isoscalar spin-triplet pairing interaction is known to be stronger than the isovector spin-singlet (T=1, S=0) one in nuclear matter.⁴⁾ Nevertheless, nuclei favor the spinsinglet T=1 pairing between identical particles. A straightforward explanation for this contradiction is that most stable nuclei have different numbers of neutrons and protons; thus, protons and neutrons occupy different single-particle orbits near the Fermi surface, which leads to the inhibition of T=0 pairing. It was also suggested that the nuclear spin-orbit field largely suppresses the spin-triplet pairing, much more than the spin-singlet pairing.^{5,6)}

To clarify the role of T = 0 pairing, we diagonalize the Hamiltonian with the spin-singlet and spintriplet pairing terms in pf shell model configurations for nuclei with the same number of protons and neutrons, N = Z. The pairing correlation energies of the $(J^{\pi} = 0^+, T=1)$ and $(J = 1^+, T=0)$ states are shown in Fig. 1 as a function of the scaling factor f for the T = 0 pairing. The lowest energy state with $J^{\pi}=0^+$ for the l=3 case acquires more binding energy than the $J^{\pi}=1^+$ state for the strength factor f < 1.5. In the case of strong T=0 pairing, that is, $f \geq 1.6$, the $J^{\pi} = 1^+$ state acquires more binding energy than the lowest $J^{\pi}=0^+$ state. These results are largely attributed to the quenching of the T=0 pairing matrix element by the transformation coefficient corresponding to a change of the scheme from the jjcoupling to LS coupling. This quenching never happens for the T=1 pairing matrix element, since the mapping of the two-particle wave function between the two coupling schemes is simply implemented by a factor $\sqrt{i+1/2}$. For the l=1 case, there is a competition between the $J^{\pi}=0^+$ and the $J^{\pi}=1^+$ states as seen in Fig. 1. Because of smaller spin-orbit splitting in this case, the couplings among the available configurations are rather strong, and the lowest $J^{\pi}=1^+$ state acquires more binding energy than the $J^{\pi}=0^+$ state when $f \geq 1.4$. These results are consistent with the spins observed for N = Z odd-odd nuclei in the pfshell, where all the ground states have the spin-parity $J^{\pi} = 0^+$, except for ${}^{58}_{29}$ Cu. The ground state of ${}^{58}_{29}$ Cu has $J^{\pi} = 1^+$, because the odd proton and odd neutron

 $^{\ast 2}$ $\,$ Center for Mathematics and Physics, the University of Aizu

Fig. 1. (Color online) Pairing correlation energies for the lowest $(J^{\pi} = 0^+, T=1)$ and $(J = 1^+, T=0)$ states with the l = 3 and l = 1 configurations as a function of the scaling factor f of the T = 0 pairing. The strength of the spin-singlet T=1 pairing interaction is fixed at $G^{(T=1)}=24/A$ MeV with mass A=56, while the strength for the spin-triplet T=0 pairing interaction, $G^{(T=0)}$, is varied with the factor f multiplied by $G^{(T=1)}$.

occupy mainly the 2p orbits, wherein the spin-orbit splitting is expected to be much smaller than in 1f orbits.

In summary, by diagonalizing the pairing Hamiltonian, we have shown that the spin-triplet pairing correlation energy in the 1f shell configuration becomes larger than the spin-singlet pairing energy when the strength of the spin-triplet pairing is larger than that of the spin-singlet pairing by a factor of 1.6 or more. However, for the 2p configuration, the spin-triplet pairing correlation becomes dominant even when the factor f is approximately 1.4.

References

- A. L. Goodman, Nucl. Phys. A186, 475(1972); Phys. Rev. C60, 014311(1999).
- A. O. Macchiavelli et al., Phys. Rev. C61, 041303(R)(2000);
 A. O. Macchiavelli et al., Phys. Lett. B480, 1(2000).
- 3) A. F. Lisetskiy et al., Phys. Rev. C68, 034316 (2003).
- M. Baldo, U. Lombardo, and P. Schuck, Phys. Rev. C52, 975(1995); L. G. Cao, U. Lombardo, and P. Schuck, Phys. Rev. C74,064301(2006).
- A. Poves and G. Martinez-Pinedo, Phys. Lett. B430, 203(1998).
- G. F. Bertsch and Y. Luo, Phys. Rev. C81, 064320(2010).

 $^{^\}dagger$ Condensed from the article in Phys. Rev. C 87, 034310 (2013)

^{*1} RIKÉN Nishina Center

^{*&}lt;sup>3</sup> Department of Physics, Tohoku University