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On the importance of using exact pairing in the study of pygmy
dipole resonance†

N. Dinh Dang∗1 and N. Quang Hung∗2

One of the major issues in the theoretical study of
the pygmy dipole resonance (PDR) in medium and
heavy nuclei is the discrepancy in the predictions of
different approaches regarding the strength and collec-
tivity of the PDR. While the relativistic random-phase
approximation seems to predict a prominent peak iden-
tified as the collective PDR below 10 MeV in heavy nu-
clei1,2), the results of calculations including monopole
pairing within the quasiparticle RPA (QRPA) do not
expose any collective states in the low-energy region
of the E1 strength distribution3). One of the possible
sources of such discrepancy may well lie in superfluid
pairing, which plays a crucial role in open shell nu-
clei in the vicinity of the neutron drip line. However
all the theoretical calculations of the PDR so far ei-
ther neglected pairing, such as the relativistic RPA, or
adopted the mean-field pairing. The latter is taken into
account within the Hartree-Fock-Bogolyubov, Hartree-
Fock + BCS formalisms, or coupling of QRPA particle-
hole (ph) states to more complicate configurations like
the 2p2h ones. Given the progress in the exact solu-
tions of the pairing problem in recent years, it is highly
desirable to see how exact pairing affects the PDR as
compared to the predictions given by the approaches
employing the conventional mean-field pairing gap.

The present paper studied the effect of superfluid
pairing on the PDR in light, medium and heavy
neutron-rich oxygen, calcium and tin isotopes. Beside
the conventional BCS gap, the exact pairing gap ob-
tained by diagonalizing the pairing Hamiltonian with
constant parameters GN and GZ for neutron and pro-
ton pairing interactions, respectively, is also employed
to calculate the strength function of the giant dipole
resonance (GDR) in these nuclei within the framework
of the phonon-damping model (PDM)4). The anal-
ysis of the numerical calculations allows us to make
the following conclusions: 1) Exact pairing decreases
the two-neutron separation energy in light nuclei, but
increases it in heavy nuclei as compare to that ob-
tained within the BCS theory; 2) Exact pairing sig-
nificantly enhances the PDR in medium (calcium) and
heavy (tin) nuclei, whereas the BCS pairing causes a
much weaker effect as compared to the case when pair-
ing is neglected. This observation indicates that BCS
pairing might not be sufficient to describe the PDR in
medium and heavy neutron-rich nuclei; 3) The signifi-
cant change in the line shape of the GDR with increas-
ing the mass number A indicates that the values for the
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Fig. 1. GDR strength functions for calcium isotopes ob-

tained within the PDM. The predictions without pair-

ing, including BCS pairing and exact pairing are de-

noted by the dashed, thin solid, and thick solid lines,

respectively.

model’s parameters cannot be kept fixed when the cal-
culations are extended to the nuclei in the vicinity of
the neutron drip line. This includes the parameters of
the nuclear mean field such as the parameters of the
Woods-Saxon potential or the parameters of effective
interactions such as various Skyrme types, which are
used in microscopic calculations of the GDR and PDR.

The obtained results may serve as a hint to clar-
ify while several microscopic approaches, mentioned
in the Introduction, are in disagreement regarding the
strength and fine structure of the PDR. The present
paper also emphasizes the necessity of using exact pair-
ing, whenever possible, instead of the BCS one or the
HFB average pairing gap in the future study of the
PDR.
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Microscopic analysis of fusion hindrance in heavy systems

K. Washiyama∗1

The interplay between nuclear structures and dy-
namical effects is crucial for appropriate descrip-
tions of heavy-ion fusion reactions at energies around
the Coulomb barrier. Coupled-channels calculations
have been widely used to quantitatively describe the
entrance channel of fusion reactions in light- and
medium-mass systems whose charge product (Z1Z2)
is less than 1, 600. On the other hand, in heavy sys-
tems (Z1Z2 > 1, 600), it is observed that the fusion
probability is strongly hindered around the Coulomb
barrier, compared with Z1Z2 < 1, 600 systems and
with coupled-channels results.1) This is called fusion
hindrance, and the extra energy needed to make such
systems to fuse is called extra-push energy.2) Quasi-
fission process, where a colliding system reseparates to
projectile-like and target-like fragments before form-
ing a compound nucleus, is considered to be mostly re-
sponsible for this hindrance. For a better description of
the reaction mechanism in heavy systems, a dynamical
diffusion model using a macroscopic Langevin equation
has been developed.3) Moreover, extra-push energies
and quasi-fission process have been analyzed using the
time-dependent Hartree-Fock (TDHF) model.4)

Recently, we proposed a method to extract nucleus-
nucleus potential and one-body energy dissipation
from the relative motion of colliding nuclei to nuclear
intrinsic excitations in fusion reactions from TDHF
time evolutions.5) This method relies on the hypoth-
esis that complex microscopic mean-field evolution of
head-on collisions can be accurately reduced to a sim-
ple one-dimensional macroscopic evolution that obeys
a Newton equation including potential and dissipation
terms. In the present report, we apply this method
to study the property of potential and energy dissipa-
tion in heavy systems and to understand the origins of
fusion hindrance.

Figure 1 shows nucleus–nucleus potentials V as a
function of relative distance R for the 96Zr+ 124Sn sys-
tem (Z1Z2 = 2, 000) obtained with our method for
three center-of-mass energies Ecm. As a reference, we
plot by the filled circles the frozen density potential
calculated from the same energy density functionals as
in TDHF with the density of colliding nuclei frozen to
their ground-state one, meaning that no dynamical ef-
fects are included during collision. Note that for the
case with Ecm = 228.4MeV, the relative velocity Ṙ
becomes almost 0 at R ∼ 11.4 fm, and we stop the
extraction of potential at this stage (indicated by the
blue filled diamond in Fig. 1). By comparing the ob-
tained potentials in Fig. 1 with those in Z1Z2 < 1, 600
systems in Ref.5), we find two significant differences:

∗1 RIKEN Nishina Center

Fig. 1. Nucleus–nucleus potential of the 96Zr+ 124Sn sys-

tem extracted from our method with different Ecm.

Filled circles denote the frozen density potential. The

arrow indicates the fusion threshold energy.

(1) Energy dependence of potential, which appears
around the Coulomb barrier in Z1Z2 < 1, 600 sys-
tems, is less pronounced in heavy systems. (2) While
a barrier is observed in the frozen density potential at
R ∼ 12.8 fm, there is no barrier in the obtained poten-
tials, and the potentials monotonically increase as R
decreases because of dynamical effects. Furthermore,
we analyze the origin of the fusion hindrance from
the TDHF trajectory with the fusion threshold energy,
Ecm = 228.4MeV. Extra-push energy by TDHF can be
defined as the difference between the fusion threshold
energy and the barrier of the frozen density potential.
In this system, this is calculated to be 14MeV. Accord-
ing to our method of extracting potential, the origin of
the extra-push energy can be identified from the sum
of the total dissipated energy, increase in potential en-
ergy, and remaining kinetic energy. In this case at
R ∼ 11.4 fm, the total dissipated energy and increase
in potential energy are 4.0MeV and 9.2MeV, respec-
tively. We conclude from this analysis that the main
contribution to the extra-push energy is the increase
in extracted potential at R � 12.8 fm.
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