Study of the superallowed β -decay of ¹⁰⁰Sn

D. Lubos,^{*1,*2} M. Lewitowicz,^{*3} R. Gernhäuser,^{*1} R. Krücken,^{*4} S. Nishimura,^{*2} H. Sakurai,^{*5} H. Baba,^{*2}
B. Blank,^{*6} A. Blazhev,^{*7} P. Boutachkov,^{*8} F. Browne,^{*9,*2} I. Celikovic,^{*3} P. Doornenbal,^{*2} T. Faestermann,^{*1}
Y. Fang,^{*10,*2} G. de France,^{*3} N. Goel,^{*8} M. Gorska,^{*8} S. Ilieva,^{*11} T. Isobe,^{*2} A. Jungclaus,^{*12} G. D. Kim,^{*13}
Y.-K. Kim,^{*13} I. Kojouharov,^{*8} M. Kowalska,^{*14} N. Kurz,^{*8} Z. Li,^{*15} G. Lorusso,^{*2} K. Moschner,^{*7}
I. Nishizuka,^{*16,*2} J. Park,^{*4} Z. Patel,^{*17,*2} M. M. Rajabali,^{*4} S. Rice,^{*17,*2} H. Schaffner,^{*8} L. Sinclair,^{*18,*2}

P.-A. Söderström,^{*2} K. Steiger,^{*1} T. Sumikama,^{*16} H. Watanabe,^{*19} Z. Wang,^{*4} J. Wu,^{*12,*2} and Z. Y. Xu^{*5,*2}

An experiment for studying the superallowed Gamow-Teller decay of the doubly magic nucleus ¹⁰⁰Sn was performed in June 2013 at the high-resolution separator BigRIPS of the RIBF at the RIKEN Nishina Center. The β -decay of a $g_{9/2}$ -proton in ¹⁰⁰Sn to a $g_{7/2}$ -neutron in ¹⁰⁰In shows the smallest log(ft) = $2.62^{+0.13}_{-0.11}$ value in the nuclear chart. The Gamow-Teller strength $B_{GT} = 9.1^{+2.6}_{-3.0}$, as deduced from the last experiment at $GSI^{(1)}$. This value is consistent with the results of B_{GT} calculations as derived from LSSM calculations. However, the uncertainties in the extracted B_{GT} are still dominated by statistics. In particular, the contribution of the β -decay end-point energy $E_{\beta,max}$ amounts to 85% of the B_{GT} uncertainty. In the present experiment, a 4 mm Be target was bombarded with a $^{124}\mathrm{Xe}$ beam of 345 MeV/u at intensities up to 36.4 pnA to produce ¹⁰⁰Sn by fragmentation. In total, 2525¹⁰⁰Sn ions (Fig. 1) were identified during 8.5 days of beamtime. This exceeds the number obtained in the previous experiment at $GSI^{(1)}$ by nearly a factor of 10, and the uncertainties in B_{GT} are expected to be improved by more than a factor of 2. Furthermore, a number of nuclides towards the proton dripline have been newly identified (see Celiković et al.²⁾) and significantly higher statistics for N=Z and N=Z-1 isotopes have been obtained.

In order to observe β - and γ -decays, ¹⁰⁰Sn and most of the neighboring nuclei (see Fig. 1) were implanted into the WAS3ABi detector, which is a closed stack consisting of three highly segmented silicon detectors of 1 mm thickness each surrounded by 84 Ge- and 18 LaBr-detectors of the 4π - γ -spectrometer EURICA. This WAS3ABi detector array is expanded by a stack of 10 silicon detectors of the same thickness in order

*1 Physik Department E12, Technische Universität München

- *2**RIKEN** Nishina Center
- *3 GANIL
- *4 TRIUMF
- *5Department of Physics, University of Tokyo
- *6 CENBG
- *7Institut für Kernphysik, Universität zu Köln *8
- GSI Darmstadt
- *9 School of Comp., Eng. and Maths., Brighton University
- *10Department of Physics, Osaka University
- *11 Institut für Kernphysik, TU Darmstadt *12
- IES CSIS
- *13Institute for Basic Science
- *14 CERN
- *15 School of Physics, Peking University
- *16Department of Physics, Tohoku University
- *17 Department of Physics, Surrey University
- *18 Department of Physics, University of York *¹⁹ Department of Physics, Beihang University

Fig. 1. figure PID plot in the region of ¹⁰⁰Sn. The total number of identified ¹⁰⁰Sn nuclei is 2525 (red encircled region).

> to measure the total energy of the decay positrons accurately. Since $E_{\beta,max} = 3.29 \pm 0.20$ MeV is rather small¹), the decay positrons are stopped in the silicon stack, enabling a high-precision measurement in order to determine $E_{\beta,max}$. We find correlated β -decays by considering decay events occurring within a time window t_c and active detector volume around the implantation. Thus, we can determine the half-lives of β -decays. From β -delayed γ -decays, using the largest data sample on ¹⁰⁰Sn, we will be able to distinguish between two scenarios for the β -delayed γ -cascades to confirm a dominantly populated 1^+ state in ¹⁰⁰In after β -decay. Furthermore, we are looking for a 6⁺ isomeric state in 100 Sn, as predicted by Grawe et al.³⁾ based on LSSM calculations.

> After a preliminary energy calibration of the WAS3ABi detectors, one of the most challenging tasks is to determine systematic uncertainties in the β -decay endpoint energy $E_{\beta,\max}$ and β -half-life $T_{1/2}$. A small (systematic) error in these quantities affects the B_{GT} , resulting in a large relative uncertainty. Since ¹⁰⁰Sn has a long half-life, the background contribution on this measurement is also studied in detail to minimize these systematic uncertainties.

> First results indicate a good agreement with known values¹⁾ of both quantities $T_{1/2}(^{100}Sn)$ and $E_{\beta,\max}(^{100}Sn).$

References

- 1) C. Hinke et al., Nature, **486**, 341 (2012)
- 2) I. Čeliković et al., RIKEN Acc. Prog. Rep., this volume
- 3) H. Grawe et al., Eur. Phys. J. A 27, s01, 257 (2006)

