First physics data of the J-PARC E15 Experiment

Y. Sada,^{*1,*2} M. Iwasaki,^{*1,*3} Y. Ma,^{*1} H. Ohnishi,^{*1} F. Sakuma,^{*1} M. Sato,^{*1} M. Tokuda,^{*1,*3} Q. Zhang,^{*1} for the J-PARC E15 Collaboration

1 Introduction

The $\bar{K}N$ interaction has been determined to be strongly attractive through extensive measurements of the kaonic hydrogen atom and low-energy KN scattering. As a consequence of strong $\overline{K}N$ interaction, there are many theoretical predictions of the deeply bound K-nuclear states. In particular, an extensive study on the simplest K-nuclear bound system, KNN, has been in progressed on both the theoretical and experimental¹⁾ sides. Since available experimental information is limited, interpretations of the results are controversial. To completely understand the $\bar{K}N$ interaction, we require more experimental results on various interactions for formation of the $\bar{K}NN$ bound state. The E15 experiment at the K1.8BR beam-line aims to search for the $\bar{K}NN$ bound state²⁾ with the in-flight ${}^{3}He(K^{-},N)$ reaction at 1.0 GeV/c. Such measurement allows us to investigate the KNN bound state in terms of both its formation via missing-mass spectroscopy and its decay via invariant-mass spectroscopy.

2 Experimental setup

The experimental setup consists of three parts: a high-precision beam-line spectrometer, a cylindrical detector system (CDS) that surrounds a liquid ³He target system, and forward particle TOF detectors. The kaon beam at a momentum of 1.0 GeV/c is identified using an aerogel Cherenkov counter. The kaon beam momentum is analyzed by the beam-line spectrometer, which has a momentum resolution of 2.2 MeV/c at 1.0GeV/c. The CDS is placed around the target in order to detect decay particles from the KNN bound state. The CDS consists of a solenoid magnet, a cylindrical drift chamber (CDC), and a cylindrical detector hodoscope (CDH). The decay particles from the target are detected by the CDS, which has a solid angle coverage of 59% of 4π . With the CDS, we can perform particle identification and track reconstruction (momentum resolution is 5% at 600 MeV/c). A neutron TOF counter (NC), placed 15 m downstream from the center of the target at 0 degrees with respect to the beam direction, measures forward-going neutral particles. The TOF resolution is determined to be 150 ps (σ) using a gamma-ray data sample. The missing-mass resolution of the ${}^{3}\text{He}(K^{-}, n)$ reaction is estimated to be 9 MeV/c² at the region of interest ($P_n \sim 1.2 \text{ GeV/c}$). The details of the spectrometer system can be found in another $paper^{3}$.

3 First physics data

The first physics run of the E15 experiment was carried out in May 2013. By irradiating 5×10^9 kaons on the helium-3 target, 3×10^5 forward neutrons were successfully recorded. The accumulated data corresponds to 1% of the statistics requested in the original proposal. Fig 1 shows the missing mass of the ³He(K⁻, n) reactions measured by the NC. One or more charged tracks are required in the CDS to reconstruct the reaction vertex.

In the spectrum, a peak from the quasi-free reaction $K^-N \to \bar{K}N$ on ³He is clearly seen. The spectrum with K_s^0 tagged in the CDS is superimposed on the figure, in which the excess below the $\bar{K}NN$ threshold (2.37 GeV/c²) is not observed. Therefore the excess below the $\bar{K}NN$ threshold in the semi-inclusive ³He(K⁻, n) spectrum is barely explained by the detector responses and the quasi-free reaction. Further analysis is in progress to understand the observed spectrum.

Fig. 1. Missing masses of the ${}^{3}\text{He}(K^{-},n)$ reactions.

References

M. Agnello, et al., Phys. Rev. Lett 94, 212303 (2005).;
 T. Yamazaki, et al., Phys. Rev. Lett 104, 132502 (2010).;

L. Fabbietti, et al., Nucl. Phys. A 914, 60 (2013).;

- M. Iwasaki, et al (E15 collaboration), J-PARC E15 proposal, (http://j-parc.jp/NuclPart/pac 0606/pdf/p15-Iwasaki.pdf).
- K. Agari, et al., Prog. Theor. Exp. Phys. 02B011 (2012).
 5

^{*1} RIKEN Nishina Center

^{*2} Department of Physics, Kyoto University, Japan

^{*&}lt;sup>3</sup> Department of Physics, Tokyo Institute of Technology, Japan

A. O. Tokiyasu, *et al.*; Phys. Lett. B 728C, 616-621 (2014).