Production of ²⁶²Db in the ²⁴⁸Cm(¹⁹F,5n)²⁶²Db reaction and decay properties of ²⁶²Db and ²⁵⁸Lr[†]

H. Haba,^{*1} M. Huang,^{*1} D. Kaji,^{*1} J. Kanaya,^{*1} Y. Kasamatsu,^{*2} Y. Kikutani,^{*2} H. Kikunaga,^{*3} Y. Komori,^{*2} H. Kudo,^{*4}

Y. Kudou,^{*1} K. Morimoto,^{*1} K. Morita,^{*1} M. Murakami,^{*1} K. Nakamura,^{*2} K. Nishio,^{*5} K. Ozeki,^{*1} R. Sakai,^{*1} A. Shinohara,^{*2} T. Sumita,^{*1} A. Toyoshima,^{*5} K. Tsukada,^{*5} Y. Wakabayashi,^{*1} and A. Yoneda^{*1}

We have been developing a gas-jet transport system coupled to GARIS as a novel technique for superheavy element chemistry.¹⁾ So far, isotopes of element 104, ²⁶¹Rf, and element 106, ²⁶⁵Sg, have been produced for chemical studies in the ²⁴⁸Cm(¹⁸O,5*n*) and ²⁴⁸Cm(²²Ne,5*n*) reactions, respectively.^{1,2)} In this work, we produced element 105, ²⁶²Db in the ²⁴⁸Cm(¹⁹F,5*n*) reaction and investigated its decay properties in detail for future chemical studies of Db.

²⁴⁸Cm₂O₃ targets with thicknesses of 230, 290, and 330 $\mu g \text{ cm}^{-2}$ were prepared by electrodeposition onto a 2- μm Ti foil. The ¹⁹F⁶⁺ or ¹⁹F⁹⁺ ion beam was extracted from RILAC. The beam energies were 103.1 and 97.4 MeV at the middle of the target, and the typical beam intensity was 4 particle µA. The evaporation residues (ERs) separated by GARIS were guided into the gas-jet chamber through a 0.5-µm-thick Mylar window, which was supported by a grid with 84% transparency. Several magnetic rigidities were investigated in $B\rho = 1.73-2.09$ Tm at a He pressure of 33 Pa; the optimal collection efficiency for 262 Db was 8.1 ± 2.2% at $B\rho = 1.89$ Tm. The ERs were then transported by a He/KCl gas jet to the rotating-wheel apparatus MANON for a/SF spectrometry. In MANON, aerosol particles were deposited on a Mylar foil of 0.5-µm thickness, 40 of which were set on the periphery of a rotating wheel. The wheel was stepped at 15.5 s intervals to position the samples between 15 pairs of Si PIN photodiodes.

We searched for time-correlated α_1 - α_2 event pairs in the time window of 58.5 s and in the energy range of 8.0 MeV $\leq E_{\alpha} \leq 9.0$ MeV. As a result, 71 and 4 α_1 - α_2 pairs were found at 103.1 and 97.4 MeV, respectively. By referring to the α -particle energies (E_{α}) and half-lives ($T_{1/2}$) adopted for ²⁶²Db and its daughter ²⁵⁸Lr, ³⁾ 74 α_1 - α_2 were reasonably assigned to ²⁶²Db \rightarrow ²⁵⁸Lr \rightarrow . One exceptional α_1 - α_2 pair at 103.1 MeV was ²⁶¹Db \rightarrow ²⁵⁷Lr \rightarrow *via* the ²⁴⁸Cm(¹⁹F,6*n*) reaction. No α_1 - α_2 pair on ²⁶³Db produced in the ²⁴⁸Cm(¹⁹F,4*n*) reaction (²⁶³Db \rightarrow ²⁵⁹Lr \rightarrow) was observed. We also observed two SF events that correlated with the α decays with energies and decay times of ²⁶²Db. This suggests that small SF and/or EC branches exist in ²⁵⁸Lr; the

EC decay daughter of ²⁵⁸Lr, ²⁵⁸No, is a short-lived SF decaying nuclide with $T_{1/2} \approx 1.2$ ms and $b_{SF} = 100\%$.³⁾ On the basis of the semi-empirical systematics of nuclear mass and half-lives, the EC decay would be favored in ²⁵⁸Lr next to the α decay.⁴⁾

The observed decay patterns of ²⁶²Db and ²⁵⁸Lr are shown in Fig. 1. The α -particle energies of $E_{\alpha} = 8.46 \pm 0.04$ (α intensity $I_a = 70 \pm 5\%$ and 8.68 ± 0.03 MeV ($30 \pm 5\%$) were determined for ²⁶²Db, though three energies of E_{α} = 8.45 (75%), 8.53 (16%), and 8.67 (9%) had been adopted.³⁾ The half-life of ²⁶²Db was measured to be $T_{1/2} = 33.8^{+4.4}$ -3.5 s, and this agrees well with $T_{1/2} = 34 \pm 4$ s in Ref.³⁾ In this work, the SF activity with $T_{1/2} = 30.2 \pm 6.1$ s was also assigned to ²⁶²Db with a SF branch of $b_{SF} = 52 \pm 4\%$. This is larger than the currently adopted $b_{\rm SF} = \sim 33\%$.³⁾ On the other hand, the α -particle energies of ²⁵⁸Lr range from $E_{\alpha} = 8.43$ to 8.73 MeV and the average α energy of $E_{\alpha} = 8.61$ MeV agrees well with $E_{\alpha} = 8.605$ MeV deduced from the α energies and intensities of ²⁵⁸Lr in Ref.³⁾ The half-life of 258 Lr, $T_{1/2} = 3.54^{+0.46}_{-0.36}$ s also agrees with that in Ref.³ ($T_{1/2}$ = $3.9^{+0.4}_{-0.3}$ s). The EC branch in ²⁵⁸Lr was first determined to be $b_{\rm EC}$ = $2.6 \pm 1.8\%$. The cross sections for the 248 Cm(19 F,5*n*) 262 Db reaction were 2.1 ± 0.7 nb at 103.1 MeV and 0.23^{+0.18}_{-0.11} nb at 97.4 MeV, while those for the 248 Cm(19 F,4*n*) 263 Db reaction were the upper limits of \leq 0.064 nb at 103.1 MeV and $\leq 0.13 \text{ nb}$ at 97.4 MeV.

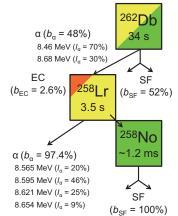


Fig. 1. Observed decay patterns for the chain ${}^{262}\text{Db} \rightarrow {}^{258}\text{Lr} \rightarrow ({}^{258}\text{No} \rightarrow)$. The α -particle energies and intensities (I_{α}) of ${}^{258}\text{Lr}$ and all decay data of ${}^{258}\text{No}$ are taken from Ref.³)

References

- 1) H. Haba et al.: Chem. Lett. 38, 426 (2009).
- 2) H. Haba et al.: Phys. Rev. C 85, 024611 (2012).
- R. B. Firestone and V. S. Shirley: *Table of Isotopes, 8th ed.* (John Wiley & Sons, New York, 1996).
- 4) H. Koura: private communication.

[†] Condensed from the article in Phys. Rev. C 89, 024618 (2014).

^{*1} RIKEN Nishina Center

^{*2} Graduate School of Science, Osaka University

^{*3} Research Center for Electron Photon Science, Tohoku University

^{*4} Department of Chemistry, Niigata University

^{*5} Advanced Science Research Center, JAEA