Alignment of the PHENIX Silicon Vertex Tracker (VTX) in the 2014 RUN

T. Moon,∗1,∗2 A. Adare,∗3 Y. Akiba,∗4 H. Asano,∗1,∗4 S. Bathe,∗1 J. Brylsowski,∗5 T. Koblesky,∗3 T. Hachiya,*1 M. Kurosawa,*1 D. McGlinchey,*3 H. Nakagomi,*1,*6 R. Nouicer,*1 T. Rinn,*7 Z. Rowan,*5 T. Sumita,*∗1 A. Taketani,*1 and the PHENIX VTX group

During the 2014 run, PHENIX has recorded a large number (∼20B) of events with the PHENIX silicon vertex tracker (VTX)1,2 and the Forward VTX (FVTX) combined. This dataset is also the best quality dataset of VTX since it was installed in 2011.

The VTX is located close to the interaction point of the two incoming particles. It consists of four coaxial cylindrical layers, with radii between 2.63 and 16.69 cm, covering the pseudo-rapidity range |η| < 1.2 and azimuthal angle Δφ ~ 2π. The two innermost layers consist of silicon pixel sensors, and the two outermost layers are made of silicon strip-pixel sensors. The VTX is designed to reconstruct primary and secondary vertices with a resolution better than 100μm for pT > 1 GeV/c as well as to significantly improve tracking performance in conjunction with other detectors, particularly the drift chamber (DC). The VTX, thus, is necessary for charm and bottom separation, and for direct measurement of D0 meson using a distance of closest approach (DCA) of the reconstructed track from the primary vertex position.

In reality, the actual installed detector position cannot be measured by our high-precision surveys. Thus there exists a relatively large mis-alignment that will significantly degrade the resolution of the measurement. Alternatively, the mis-alignment can be improved through the track-to-hit based alignment via software. The ideal geometry of the VTX for pixel and strip-pixel is first known by measurements of sensor positions in surveys and the design positions, respectively. The position of (hits on) the sensor is represented in a VTX coordinate system. On the other hand, the track for the alignment is reconstructed by the DC in a global (DC) reference coordinate system regardless of the VTX, and it is projected to the primary vertex. The relative position between the VTX and the DC is determined by measuring a beam center in each coordinate system and then (hits on) the sensor, and the track projection is represented in the global reference coordinate system. Residual (distance between the tracks and the measured hit on the sensor plane) is used to evaluate the mis-alignment in the VTX geometry.

Fig. 1. DCA distributions in X-Y plane as a pT after the alignment

Fig. 2. Resolution of DCA in X-Y plane as a function of pT after the alignment

References