New way to produce dense double-antikaonic dibaryon system, K^-K^-pp, through $Λ(1405)$-doorway sticking in $p+p$ collisions

M. Hassanvand, a1,a2 Y. Akaishi, a1,a3 and T. Yamazaki a1,a4

A recent successful observation of a dense and deeply bound K nuclear system, K^-pp, in the $p+p\rightarrow K^++K^-pp$ reaction in a DISTO experiment1 indicates that the double-K dibaryon, K^-K^-pp, which was predicted to be a dense nuclear system2,3, can also be formed in $p+p$ collisions.

We have formulated and calculated the differential cross section for the formation of the simplest double-K nuclear cluster system, K^-K^-pp, in the reaction process

$$p+p \rightarrow K^++K^++Λ^++Λ^*,$$
$$\rightarrow K^++K^++K^-K^-pp,$$
$$\rightarrow K^++K^++Λ+Λ^*,$$

where $Λ^*$ is a quasi-bound K^-p state corresponding to the $Λ(1405)$ resonance4,5. From a comprehensive study of the calculated effects of the binding and density of K^-K^-pp on the cross section, we find that the bound-state peak of K^-K^-pp dominates over the spectrum when and only when the system is dense. This is understood as the two $Λ^*$ doorway particles interact immediately within a short distance, assisted by a large momentum transfer (~ 1.8 GeV/c) and a short collision length (~ 0.3 fm), which helps to enlarge the $Λ^*+Λ^*$ sticking into a dense K^-K^-pp system. See details in Ref.4,5. This mechanism is similar to that for a single K cluster (K^-pp) formation6,7, which has just been proven by the DISTO experiment.

Fig. 2. (Color online) Differential cross sections for various bound-state energies, E, of the K^-K^-pp system for $T_p = 7.0$ GeV, $Γ = 150$ MeV, $b = 0.3$ fm and $θ_{12} = 180$.

References