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In a higher-dimensional gravity theory, a scalar field
ϕ called “radion” appears in the extra-dimensional
graviton components, and its vacuum expectation
value is related to the size of the extra space. The sta-
bilization of the radius is crucial for the solution to the
hierarchy problem in the Randall-Sundrum model1)

and inflation based on the radion2). The stabilization
is realized by the quantum effects of a graviton and
fermions in a 5D model M4 × S13).
In a higher-dimensional gauge theory, the extra-

dimensional components of gauge bosons are mass-
less at the tree level because of gauge invariance, and
their zero modes become dynamical degrees of freedom
called the Wilson line phases θ and are stabilized by
quantum corrections4). There is a possibility that re-
alistic gauge symmetries including the standard model
ones survive after the stabilization of the Wilson line
phases. The Wilson line phase receives finite radiative
corrections in its mass and can play the role of the
Higgs boson5), providing a solution to the gauge hier-
archy problem. An inflation model has been proposed
based on the idea that the Wilson line phase becomes
the inflaton6).
We investigate how the Wilson line phase and the

Casimir energy from various bulk fields are involved
in the stabilization of the radion in a different setup.
Particularly, we study the stabilization of the extra-
dimensional radius of S1 in the presence of a Wilson
line phase of the extra U(1) gauge symmetry in 5D
space-time with a flat background metric and without
branes, by using the effective potential V for ϕ and θ
at the one-loop level.

Our model consists of the 5D graviton ĝMN , a
U(1) gauge boson BM , c1 charged fermions ψi (i =
1, · · · , c1), and c2 U(1) neutral fermions ηl (l =
1, · · · , c2). We take M4 × S1 as the background 5D
space-time and impose periodic boundary conditions
on every field. We obtain the one-loop potential
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where L, m and µ are the compactification circumfer-
ence, the mass of the charged fermions and the neutral
fermions, respectively.

The potential has a finite minimum in the presence
of neutral fermions the number c2 of which is larger
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Fig. 1. The potential V (ϕ, θ) with c1 = 1, c2 = 4, m =

1×1010GeV, µ = 1×1010GeV and L = 3×10−17GeV−1.

than c1+2 and the radion is stabilized at a certain finite
value of ϕ. A typical shape of V (ϕ, θ) is depicted in
Fig. 1. From this figure, we see that the true minimum
of the potential is located on the line θ = π. The values
of ϕ and the potential at the minimum depend on the
parametersm, µ and L. Their values do not drastically
modify the shape of the potential drastically.

In this work, we investigated the behavior of the
potential for both large and small values of the radion
and found that the potential does not have a finite
minimum in the case with only charged fermions as
matter fields. The radion stabilization is realized in
the presence of neutral fermions whose number is larger
than the number of charged ones by two.

The remaining subject is the application of our po-
tential V (ϕ, θ) to an inflation model. By identifing the
extra-dimensional scalar component of the 5D gauge
field and/or the scalar component of the 5D metric as
the inflaton, we examine whether the potential repro-
duces realistic inflation parameters. The radion prop-
erties differ from thoset of the Wilson line phase.
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Is cosmological constant screened in Liouville gravity with matter?

T. Inami,∗1,∗2 Y. Koyama,∗3 Y. Nakayama,∗4 and M. Suzuki∗5,∗6

Recent observation of dark energy in our universe
has led to the conviction that the cosmological con-
stant Λ has an infinitesimal positive value. It means
that our space-time is de Sitter (dS) space with the
Hubble constant H being

√
Λ. It has been proposed

that the strong infrared (IR) divergence property of
quantum corrections on dS space may explain the
smallness of Λ in our current universe (so called cosmo-
logical constant problem). The Einstein equation de-
scribes the relation between the space-time Ricci ten-
sor Rµν and the energy momentum (EM) tensor Tµν

due to the presence of matter. In vacuum, where Tµν is
proportional to the metric, the Einstein equation takes
the form

Rµν − 1
2
gµνR + gµνΛeff = 0, Λeff = Λ − κ

D
T ρ

ρ , (1)

where R is the scalar curvature, κ = 8πG with G being
Newton’s constant. The vacuum contribution of Tµν

is now combined with Λ to define the effective cosmo-
logical constant Λeff .

In view of this expression, we may wonder if a large
value of Tµν cancels the large value of Λ, yielding a very
small value of Λeff that we observe today.?) We study
this question in 2-dimensional (2D) Liouville gravity.

We are interested in the dS solution of Liouville grav-
ity, which can describe the interaction between scaler
field and gravity. The 2D cosmological constant has
two components: the coupling of the Liouville poten-
tial and the trace of the EM tensor. By using Weyl
transformation to 2D metric gµν(gµν = e2φĝµν), we
obtain the equation,
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The first three terms are Liouville gravity. At this
point, it is important to note that the negative value
of Λ corresponds to dS space in Liouville gravity.

As a concrete matter Lagrangian, we have studied a
massless scalar field theory with λφ4 interaction mini-
mally coupled to Liouville gravity.

L = −1
2
gµν∂µφ∂νφ

√
−g − 1

4!
λφ4√−g + ∆L, (3)
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Fig. 1. Part of λ2-order corrections to the EM tensor Tµν.

where ∆L consists of counter-terms. In dS space, the
massless scalar propagator contains IR divergence in
the long wavelength limit and the IR logarithm ap-
pears because the cutoff regularization of the IR di-
vergence. Based on the in-in formalism,?,?,?) we have
computed the VEV of the EM tensor to the order of
λ2.

Λeff ∼ Λ + (Weyl anomaly) +
κλ

32π2
ln2 a(η)

+
1
8π

κλ2

(4π)2H2
ln4 a(η), (4)

where a = − 1
Hη is the scale factor and η = − 1

H e−Ht

is conformal time. The resulting VEV has time de-
pendence through the IR logarithms, and as a conse-
quence, the effective cosmological constant shows the
screening effect at late time such that the absolute
value decreases with time. This should be in contrast
with the situations where D > 2, in which the cosmo-
logical constant is anti-screened in the λφ4 theory.?)

To claim that the observed dS breaking effects are
physical, we need to find whether they may be elimi-
nated from the local counter-terms. Here, we discuss
rather unfamiliar time-dependent IR counter-terms.
This possibility plays a crucial role to understand the
(in)equivalence between the Sine-Gordon model and
the massive Thirring model in dS space. We are in-
deed able to recover the dS invariance by adding time-
dependent IR counter-terms to the naive perturba-
tive computations using the dS breaking propagator.
Within the perturbation theory we have studied, how-
ever, a similar mechanism does not seem to be work-
able in λφ4 theory. This fact supports the claim that
the observed screening mechanism of the cosmological
constant should be physical. This sensitive issue will
be further discussed in our future publication.
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