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I-6. Particle Physics

Spin operator and entanglement in quantum field theory'

K. Fujikawa,*! C.H. Oh,*? and C. Zhang*?

Entanglement is studied in the framework of Dyson’s
S-matrix theory in relativistic quantum field theory,
which leads to a natural definition of entangled states
of a particle-antiparticle pair and the spin operator
from a Noether current. As an explicit example,
the decay of a massive pseudo-scalar particle into an
electron-positron pair is analyzed. Two spin oper-
ators are extracted from the Noether current. The
Wigner spin operator characterizes spin states at the
rest frame of each fermion and, although not measur-
able in the laboratory, gives rise to a straightforward
generalization of the low energy analysis of entangle-
ment to the ultra-relativistic domain. In contrast, if
one adopts a (modified) Dirac spin operator, the en-
tanglement measured using spin correlation becomes
maximal near the threshold of the decay, while the en-
tanglement is replaced by the classical correlation for
the ultra-relativistic electron-positron pair by analogy
to the case of neutrinos, for which a hidden-variables-
type description is possible. Entanglement in this sense
depends on the energy scale involved. Chiral symme-
try which is fundamental in particle physics differenti-
ates the spin angular momentum and the magnetic mo-
ment. The use of weak interaction, which can measure
helicity, is suggested in the analysis of entanglement
at high energies instead of a Stern-Gerlach apparatus,
which is known to be useless for the electron. A dif-
ference between the electron spin at high energies and
the photon linear polarization is also noted.

We formulate the entanglement in the framework
of relativistic quantum field theory, or more precisely,
in the S-matrix theory defined by Dyson.!) In the S-
matrix theory, we treat only asymptotic states that
contain particles far apart from each other.

We consider the decay of a very massive pseudo-
scalar particle P into an electron-positron pair by
an interaction Hamiltonian, H(t) = g [d
P(z)y(x)ivs(x) : with a coupling constant g. The
Dyson formula for the S-matrix gives the state ¥ =
—ig [d*z . P(x)d(x)ivs(z) : |P(0)), where we as-
sume a small g. We then obtain for the fixed momen-
tum direction of the electron,
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This shows a way to prepare a desired state in the

framework of local and causal relativistic field the-
ory. All the properties of the asymptotic state are ac-
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counted for in the framework which is consistent with
locality, causality and the uncertainty principle; in par-
ticular, it is important to recognize that we integrate
over the entire Minkowski space in defining ¥; that
is, we have no information about when and where the
particle decayed.

Spin Operator

The conserved angular momentum operator (Noether
charge) of the Dirac action is given by J = [Pz
Y (2)[L + S)(x) :, which is written as
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The first term is called the Wigner spin operator,
which is not directly measured in the laboratory. We
instead define the (modified) Dirac spin operator
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which is close to what is measured in the laboratory.
A salient feature of this spin is that it appraoches the
helicity state proportional to the momentum direction
p for E — oco. That is, the spin correlation at high
energies becomes similar to the correlation of neutri-
nos. The spin correlation of two neutrinos, which can
have only two states h = +, does not define the en-
tanglement in the conventional sense. That is, the
high energy electron states behave like classical parti-
cles, which show the correlation but not entanglement.
This transition to helicity states may be measured us-
ing weak interactions.?)
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