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Entanglement is studied in the framework of Dyson’s
S-matrix theory in relativistic quantum field theory,
which leads to a natural definition of entangled states
of a particle-antiparticle pair and the spin operator
from a Noether current. As an explicit example,
the decay of a massive pseudo-scalar particle into an
electron-positron pair is analyzed. Two spin oper-
ators are extracted from the Noether current. The
Wigner spin operator characterizes spin states at the
rest frame of each fermion and, although not measur-
able in the laboratory, gives rise to a straightforward
generalization of the low energy analysis of entangle-
ment to the ultra-relativistic domain. In contrast, if
one adopts a (modified) Dirac spin operator, the en-
tanglement measured using spin correlation becomes
maximal near the threshold of the decay, while the en-
tanglement is replaced by the classical correlation for
the ultra-relativistic electron-positron pair by analogy
to the case of neutrinos, for which a hidden-variables-
type description is possible. Entanglement in this sense
depends on the energy scale involved. Chiral symme-
try which is fundamental in particle physics differenti-
ates the spin angular momentum and the magnetic mo-
ment. The use of weak interaction, which can measure
helicity, is suggested in the analysis of entanglement
at high energies instead of a Stern-Gerlach apparatus,
which is known to be useless for the electron. A dif-
ference between the electron spin at high energies and
the photon linear polarization is also noted.

We formulate the entanglement in the framework
of relativistic quantum field theory, or more precisely,
in the S-matrix theory defined by Dyson.1) In the S-
matrix theory, we treat only asymptotic states that
contain particles far apart from each other.

We consider the decay of a very massive pseudo-
scalar particle P into an electron-positron pair by
an interaction Hamiltonian, HI(t) = g

∫
d3x :

P (x)ψ̄(x)iγ5ψ(x) : with a coupling constant g. The
Dyson formula for the S-matrix gives the state Ψ =
−ig

∫
d4x : P (x)ψ̄(x)iγ5ψ(x) : |P (⃗0)⟩, where we as-

sume a small g. We then obtain for the fixed momen-
tum direction of the electron,

Ψ(p⃗) ≡ 1√
2
[a†(p⃗, s)b†(−p⃗,−s) + a†(p⃗,−s)b†(−p⃗, s)]|0⟩.

This shows a way to prepare a desired state in the
framework of local and causal relativistic field the-
ory. All the properties of the asymptotic state are ac-
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counted for in the framework which is consistent with
locality, causality and the uncertainty principle; in par-
ticular, it is important to recognize that we integrate
over the entire Minkowski space in defining Ψ; that
is, we have no information about when and where the
particle decayed.

Spin Operator

The conserved angular momentum operator (Noether

charge) of the Dirac action is given by ˆ⃗
J =

∫
d3x :

ψ†(x)[L⃗ + S⃗]ψ(x) :, which is written as
∫

d3p
∑
s,s′

1
2
{ξ(s′)†σ⃗ξ(s)a†(p⃗, s′)a(p⃗, s)

−ξ†(−s)σ⃗ξ(−s′)b†(p⃗, s′)b(p⃗, s)}

+
∫

d3p
∑

s

{a†(p⃗, s)
(
L⃗a(p⃗, s)

)

+b†(p⃗, s)
(
L⃗b(p⃗, s)

)
}.

The first term is called the Wigner spin operator,
which is not directly measured in the laboratory. We
instead define the (modified) Dirac spin operator

ˆ⃗
S(p⃗)

≡
∑
s,s′

{[ 1
2

m

E
ξ†(s′)σ⃗T ξ(s) +

1
2
p̂ξ†(s′)(σ⃗ · p̂)ξ(s)]

×a†(p⃗, s′)a(p⃗, s)

−[
1
2

m

E
ξ†(−s)σ⃗T ξ(−s′) +

1
2
p̂ξ†(−s)(σ⃗ · p̂)ξ(−s′)]

×b†(−p⃗, s′)b(−p⃗, s)},

which is close to what is measured in the laboratory.
A salient feature of this spin is that it appraoches the
helicity state proportional to the momentum direction
p̂ for E → ∞. That is, the spin correlation at high
energies becomes similar to the correlation of neutri-
nos. The spin correlation of two neutrinos, which can
have only two states h = ±, does not define the en-
tanglement in the conventional sense. That is, the
high energy electron states behave like classical parti-
cles, which show the correlation but not entanglement.
This transition to helicity states may be measured us-
ing weak interactions.2)
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Hardy proposed a characterization of entanglement
that does not use inequalities by EPR-type arguments.
It is however disturbing that his scheme, which is in-
tended as a measure of entanglement, completely fails
for the maximally entangled case.1)

The local hidden-variables model in d = 4 = 2 × 2
dimensions of the Hilbert space is defined by2)

⟨ψ|a · σ ⊗ b · σ|ψ⟩ =
∫

Λ

ρ(λ)dλa(ψ, λ)b(ψ, λ), (1)

where a and b are 3-dimensional unit vectors, σ stands
for the Pauli matrix, and a(ψ, λ) and b(ψ, λ) are di-
chotomic variables assuming the eigenvalues ±1 of a ·σ
and b · σ, respectively. One can show that this lo-
cal hidden-variables model does not satisfy the linear-
ity of the quantum mechanical probability measure in
the sense ⟨ψ|a · σ ⊗ b · σ|ψ⟩ + ⟨ψ|a · σ ⊗ b′ · σ|ψ⟩ =
⟨ψ|a · σ ⊗ (b + b′) · σ|ψ⟩ for non-collinear b and b′.
If the linearity of the probability measure is strictly
imposed, which is tantamount to asking that the non-
contextual hidden-variables model in d = 4 gives the
CHSH inequality |⟨B⟩| ≤ 2 uniquely,3) it is shown that
the hidden-variables model can describe only separable
quantum mechanical states4)

⟨ψ|a · σ ⊗ b · σ|ψ⟩ =
∫

ρ1(λ1)dλ1a(ψ, λ1)

×
∫

ρ2(λ2)dλ2b(ψ, λ2). (2)

In this case, it is shown that Hardy’s model becomes
trivial. Although Hardy’s paradox is interesting as an
experimental test of local realism, its mathematical ba-
sis is less solid than hitherto assumed.

Hardy’s model

Hardy defines the projection operators1)

Ûi = |ui⟩⟨ui|, D̂i = |di⟩⟨di|, (3)

with i = 1, 2, and

|ui⟩ =
1√

α + β
[β1/2|+⟩i + α1/2|−⟩i],

|di⟩ =
1√

α3 + β3
[β3/2|+⟩i − α3/2|−⟩i] (4)

for the entangled state |ψ⟩ = α|+⟩1|+⟩2 − β|−⟩1|−⟩2
with α2 + β2 = 1.
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He then shows the relations
⟨ψ|D1U2D1|ψ⟩

⟨ψ|D1|ψ⟩
= 1, (5)

⟨ψ|D2U1D2|ψ⟩
⟨ψ|D2|ψ⟩

= 1, (6)

⟨ψ|D1D2D1|ψ⟩
⟨ψ|D1|ψ⟩

= 1 − αβ

(1 − αβ)
, (7)

⟨ψ|U1U2|ψ⟩ = 0, (8)

with 0 < αβ ≤ 1/2.
In the hidden-variables model, the projection op-

erators are assigned their eigenvalues; for example,
D1(ψ, λ) = 1 or 0, depending on the hidden-variable
λ. Relation (7) implies

∫
dλρ(λ)D1(ψ, λ)D2(ψ, λ) ̸= 0

for 0 < αβ < 1/2 and thus

D1(ψ, λ) = 1 and D2(ψ, λ) = 1 (9)

for some λ, while (8) implies
∫

dλρ(λ)U1(ψ, λ)U2(ψ, λ) =
0 and thus

U1(ψ, λ)U2(ψ, λ) = 0 (10)

for all λ. On the other hand relations (5) and (6) imply

D1(ψ, λ) = 1 ⇒ U2(ψ, λ) = 1,
D2(ψ, λ) = 1 ⇒ U1(ψ, λ) = 1, (11)

respectively, where ⇒ means ”inevitably implies”.
For the entangled state with 0 < αβ < 1/2 except

for αβ = 1/2, which implies the maximum entangle-
ment, the relations (9)-(11) are inconsistent.1) This is
called Hardy’s paradox, which shows the inconsistency
of local realism with entanglement except for the max-
imally entangled case without referring to inequality.

On the other hand, for a pure state, Bell’s theorem
|⟨B⟩| ≤ 2 with B = a·σ⊗(b+b′)·σ+a′·σ⊗(b−b′)·σ for
any a, a′, b, and b′ implies5) relation (2), namely, the
separable state. The separable state in Hardy’s model,
which is consistent with local realism, imlies α = 1 and
β = 0, for example, for which |ψ⟩ = |+⟩1|+⟩2 while
Ûi = |−⟩ii⟨−| and D̂i = |−⟩ii⟨−|. In this case,

⟨U1⟩ = ⟨U2⟩ = ⟨D1⟩ = ⟨D2⟩ = 0, (12)

and all the correlations vanish; thus, Hardy’s model
becomes mathematically trivial. Hardy’s model is in-
consistent with local realism by construction.
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