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Among all the Virasoro generators of Conformal
Field Theory (CFT), three of them, L0, L1 and L−1,
form a subalgebra that is isomorphic to sl(2, R) and
corresponds to the global conformal transformation.
The Casimir operator of the subalgebra can be ex-
pressed as

C2 = L2
0 − L2

+ − L2
−, (1)

where

L+ =
L1 + L−1

2
, L− =

L1 − L−1

2i
. (2)

In analogy with the 2+1 dimensional Lorentz trans-
formation, the space spanned by L0, L+ and L− is
apparently divided into three distinctive regions. The
first region is the “time-like” region that contains L0

and small perturbations around it. Any vector within
this region can be transformed to L0 upto some nu-
merical multiplication, by the global conformal trans-
formatiom or the sl(2, R). This is actually the region
one would have in mind, when one demanded the in-
variance of the vacuum on the basis of the physical
equivalence for the states connected by the global con-
formal transformation. The second is the “space-like”
region, which contains the linear combination of L+

and L−. The region between these two is the last one,
and could be called the “light-cone” region. This re-
gion is represented by either L0 − L+ or L0 − L−.

If one further invokes the analogy with the Lorentz
geometry, the “time-like” region corresponds to the
“massive” representation. Since one observes the spec-
trum of L0 in this region, the “mass” in this case should
be the inverse of the circumference, or the finite scale of
CFT1,2). Then, it is natural to induce that the “light-
cone” region corresponds to the “massless” represen-
tation and the infinite circumference. In this letter, we
will argue that if one takes the generator in the “light-
cone” region, say L0 −L+ (plus anti-holomorphic part
L̄0−L̄+, to be exact), as a Hamiltonian, one can obtain
a CFT with the infinite circumference.

Should we adopt a generator that corresponds to
L0 −L+ as a Hamiltonian, we can define the following
conserved charges:

Lκ ≡ 1
2πi

∮ t=const.

dz(−1
2
(z − 1)2)e

2κ
z−1 T (z), (3)

where T (z) = Tzz(z) is the energy momentum tensor
of the original CFT. Note that for κ = 0

L0 =
1

2πi

∮ t=const.

dz(−1
2
(z − 1)2)T (z)
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= L0 −
L1 + L−1

2
. (4)

One can further calculate the commutation relations
among the charges defined above using the operator
product expansion of the energy momentum tensor

T (z)T (w) ∼ c/2
(z − w)4

+
2T (w)

(z − w)2
+

∂wT (w)
z − w

+· · · .(5)

The result reads

[Lκ,Lκ′ ] = (κ − κ′)Lκ+κ′ +
c

12
κ3δ(κ + κ′). (6)

We have thus obtained the continuous Virasoro algebra
with the central charge c, establishing that we have the
theory that exhibits the continuous spectrum. This is
consistent with the argument presented at the begin-
ning.

This also nicely explains the feature observed in the
phenomena called sine-square deformation (SSD) at
least for the case that involves CFT. It was found
3–6) that a certain class of quantum systems, systems
with closed and open boundary conditions, have iden-
tical vacua provided that the coupling constants of the
open-boundary system are modulated in a specific way.
In particular, SSD works for two-dimensional confor-
mal field theories and it’s implications for string the-
ory were discussed by the present author7,8). SSD for
CFT adopts exactly (4) as the (holomorphic part of
) Hamiltonian. At that time, it had been somewhat
enigmatic that these two systems with different bound-
ary conditions share the same vacuum state, but this
can be explained through the discovery of the contin-
uous spectrum for the SSD system. Because the con-
tinuous spectrum suggest that SSD system has an in-
finitely large space, the distinction between the open
and closed condition at the ends that located at in-
finitely away, is no longer physically relevant.
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Towards U(N |M) knot invariant from ABJM theory

B. Eynard∗1,∗2 and T. Kimura∗1,∗3

The knot invariant can be realized using the Wilson
loop operator in Chern–Simons gauge theory. Espe-
cially for the invariant for unknot and torus knot, there
exists an integral representation analogous to the U(N)
symmetric matrix model. Recently it was pointed out
that the partition function of ABJM theory on S3 can
be written as a supermatrix integral.1) From this point
of view, it is natural to explore a possibile connection
between the ABJM Wilson loop and a knot invariant.

The ABJM partition function is written as follows,

Z =
1

N !2

∫
[dx]N [dy]N det

1≤i,j≤N

(
1

2 cosh
xi−yj

2

)2

,

(1)

where [dx] = dx
2π e−

1
2gs

x2

and [dy] = dx
2π e

1
2gs

y2

with the
string coupling constant gs = 2πi/k. In this expres-
sion the Wilson loop operator in the representation
R is given by the corresponding character of U(N |N)
group, WR → StrR U(x; y) with the holonomy matrix
U(x; y) = diag(ex1 , · · · , exN ,−ey1 , · · · ,−eyN ). When
the partition λ, corresponding to the representation
R, satisfies ΛN+1 > N , this character is decomposed
into that for SU(N) which is written in terms of the
Schur function,

StrR U(x; y) = sµ(e
x) sν(e

y)
N∏

i,j=1

(exi − eyj ) , (2)

where µt
i = λt

i+N and νti = λi+N . We consider this
case in particular. Thus the integral representation for
the unknot Wilson loop in ABJM theory is now written

〈
WR(Kunknot)

〉

=

∫
[dx]N [dy]N det

(
1

2 cosh
xi−yj

2

)
N∏
i=1

exiξi+yiηi

(3)

with ξi = λi−i+1/2, ηi = λt
i−i+1/2. We can compute

this integral by applying the Fourier transform formula
1/ coshw =

∫
dz
π e2iwz/π/ cosh z,

〈
WR(Kunknot)

〉
= k−Nq

1
2 (C2(µ)−C2(ν))

× det
1≤i,j≤N

(
1

q
1
2 (ξi+ηj) + q−

1
2 (ξi+ηj)

)
, (4)

where the parameter is defined as q = egs and

C2(λ) =
∑∞

i=1

((
λi − i+ 1

2

)2 − (
−i+ 1

2

)2)
is the sec-

ond Casimir operator, corresponding to the framing
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factor. This shows that the U(N |N) character average
is factorized into that for U(1|1) theory. This kind of
property is called Giambelli compatibility.2)

In order to see the connection to the ordinary knot
invariant in U(N) from the determinantal expression
(4), it is convenient to rewrite as follows,

k−Nq
1
2 (C2(µ)−C2(ν))

N∏
i,j=1

(
q

1
2 (ξi+ηj) + q−

1
2 (ξi+ηj)

)−1

×
N∏
i<j

(
q

1
2 (ξi−ξj) − q−

1
2 (ξi−ξj)

) (
q

1
2 (ηi−ηj) − q−

1
2 (ηi−ηj)

)
.

(5)

The last two factors coincide with the Wilson loop av-
erage in U(N) theory, which is given by the quantum
dimension of the representation R, up to the normal-
ization constant.

The integral formula shown above can be generalized
to the situation for the torus knot, which is labeled by
two coprime integers (P,Q). In this case the partition
function is slightly modified

Z(P,Q) =
1

N !2

∫
[dx]N [dy]N

× det
1≤i,j≤N

(
1

2 cosh
xi−yj

2P

)
det

1≤i,j≤N

(
1

2 cosh
xi−yj

2Q

)
.

(6)

We can show this torus knot partition function
is just given by the symplectic transform of the
original unknot partition function. Thus it can
be shown that they are related in a simple way,
Z(P,Q) = (PQ)NZ(1,1). Since there exists the U(N |N)
character, written in terms of the Schur function,
sλ(u

Q; vQ) =
∑

µ c
µ
λ,Qsµ(u; v), as well as the ordinary

U(N) theory, finally the torus knot Wilson loop aver-
age can be expressed as a linear combination of that
for the fractionally framed unknot,

〈
WR(KP,Q)

〉
=

∑
V

cVR,Q

〈
WR(K1,f )

〉
(7)

with the framing number f = Q/P . This is just a
supersymmetric version of the Rosso–Jones formula for
the torus knot invariant.3)
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