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In quantum field theory, in order to compute correla-
tion functions, it is convenient to introduce the gener-
ating function by adding an extra source term. Such a
generating function is defined in the sense of path inte-
gral, and thus it is quite difficult to compute in general.
However, in the matrix model, just a zero dimensional
theory, a number of methods for computation are es-
tablished, which are also applicable to the model with
the external source. In this report we generalize the
duality of the matrix model with the external source
with a characteristic polynomial, which was originally
found in the Gaussian matrix model,1) to the super-
matrix model with an arbitrary matrix potential.
The correlation function of the characteristic poly-

nomial in the supermatrix model, which we study here,
is given by

ΨN,M ;p,q

(
{ai}Ni=1, {bj}Mj=1; {λα}pα=1, {µβ}qβ=1

)

=

∫
dZ e−

1
h̄ StrW (Z)+StrZC

∏p
α=1 Sdet(λα − Z)∏q
β=1 Sdet(µβ − Z)

(1)

where Z is a size N +M Hermitian supermatrix, and
the external source is C = diag(a1, . . . , aN , b1, . . . , bM ).
This formula includes several useful situations, e.g., the
ordinary characteristic polynomial average (M = q =
0), the average of inverses (M = p = 0), and the ra-
tio average (M = 0). Therefore it provides a master
formula for the characteristic polynomial average in
various matrix models.
The matrix measure in the integral is invariant under

the supergroup transformation, dZ = d(UZU−1) with
U ∈ U(N |M), which is expressed in terms of eigenval-
ues, dZ = ∆N,M (x; y)2 dNx dMy dU . Here the Jaco-
bian is given by the Cauchy determinant,

∆N,M (x; y) =

∏N
i<j(xi − xj)

∏M
i<j(yi − yj)∏N,M

i,j (xi − yj)
. (2)

Then, to compute the intgral, we now introduce the
Harish-Chandra–Itzykson–Zuber formula for the su-
pergroup U(N |M)2–4)

∫

U(N |M)

dU eStrZUCU−1

=
det exiai det e−yibj

∆N,M (x; y)∆N,M (a; b)
. (3)

Applying this formula, we obtain the following expres-
sion for the matrix integral in terms of eigenvalues
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ΨN,M ;p,q =

∫ N,M∏
i,j

dxi dyj e
− 1

h̄W (xi)+
1
h̄W (yj)+xiai−yjbj

× ∆N+p,M+q(x, λ; y, µ)

∆N,M (a; b)∆p,q(λ;µ)
. (4)

Since the Cauchy determinant can be written as a de-
terminant

∆N,M (x; y) = det

(
xk−1
i

(xi − yj)
−1

)
(5)

with i = 1, . . . , N , j = 1, . . . ,M , k = 1, . . . , N −M , if
N ≥ M , we obtain the determinanal formula for the
characteristic polynomial average

ΨN,M ;p,q

(
{ai}Ni=1, {bj}Mj=1; {λα}pα=1, {µβ}qβ=1

)

=
1

∆N,M (a; b)∆p,q(λ;µ)
det




Qk−1(ai) Pk−1(λα)
R(ai; bj) SR(λα; bj)

SL(ai;µβ) R̃λα;µβ


 ,

(6)

where we have introduced auxiliary functions:

Pi−1(x) = xi−1 , R̃(x; y) =
1

x− y
, (7)

Qi−1(a) =

∫
dxPi−1(x) e

− 1
h̄W (x)+xa , (8)

R(a; b) =

∫
dxdy R̃(x; y) e−

1
h̄ (W (x)−W (y))+xa−yb , (9)

SL(a;µ) =

∫
dx

1

x− µ
e−

1
h̄W (x)+xa , (10)

SL(λ; b) =

∫
dy

1

λ− y
e

1
h̄W (y)−yb . (11)

The formula (6) actually shows a duality between
the external source and the characteristic polynomial,
which is just given by Laplace (Fourier) transforms,

ΨN,M ;p,q

(
{ai}Ni=1, {bj}Mj=1; {λα}pα=1, {µβ}qβ=1

)

F.T.
= Ψp,q;N,M

(
{λα}pα=1, {µβ}qβ=1; {ai}

N
i=1, {bj}Mj=1

)
.

(12)

This is because the auxiliary functions transform
to each other through the Fourier transformation:
Pi−1(x) ↔ Qi−1(a), R(x; y) ↔ R̃(a; b), SL(λ; b) ↔
SR(a;µ).
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Bulk angular momentum and Hall viscosity in chiral
superconductors†

A. Shitade∗1 and T. Kimura∗2,∗3

Chiral superfluids and superconductors (SCs) are ex-
otic states whose time-reversal symmetry is sponta-
neously broken and Cooper pairs carry nonzero angu-
lar momentum (AM). There is a long-standing prob-
lem on the AM in chiral �-wave SCs, the so-called
intrinsic AM paradox, which is summarized as Lz =
h̄mN0/2 × (∆0/EF)

γ , where |m| ≤ �, N0, ∆0, EF, γ
are the magnetic quantum number, the total number
of electrons, the gap strength, the Fermi energy, and
the exponent characterizing the dependence on the SC
gap. γ = 0 is the most natural if all electrons from
Cooper pairs with the AM �z = h̄m. On the other
hand, γ = 1 is intuitively plausible if a electrons near
the Fermi surface from Cooper pairs.1) One of the ob-
stacle is that the physical quantities involving the po-
sition operator are ill defined in periodic systems, and
we have to manage an inevitable divergence in the bulk
limit. An interesting clue to the AM is the Hall vis-
cosity (HV), which has been intensively discussed in
the context of the quantum Hall effect. The important
relation ηH = h̄N0s̄/2 holds in general gapped systems
at zero temperature,2) in which the orbital spin s̄ is
equal to �

2 in chiral �-wave SCs. In this report, we
derive the Berry-phase formulas for the AM and the
Hall viscosity (HV) to apply to chiral SCs in two and
three dimensions, which allow us to deal with the bulk
systems.

We examine an angular velocity from the gauge-
theoretical viewpoint. Now that the system is rotated,
we have to deal with a theory in a curved spacetime.
We use the Cartan formalism, consisting of two gauge
potentials, a vielbein and a spin connection. Since we
are now interested in the orbital AM, we do not con-
sider the spin connection corresponding to the internal
AM for simplicity. A vielbein ha

µ is a gauge potential
corresponding to local spacetime translations, while a
spin connection is that corresponding to local Lorentz
transformations. The spatial component of a vielbein
is related to a displacement vector. Since a vielbein
is a gauge potential, it induces a field strength called
torsion,

T l
j0 = ∂jh

l
0 − ∂0h

l
j , T l

ij = ∂ih
l
j − ∂jh

l
i . (1)

The former is “electric.” The first term describes an
angular velocity if l and j are antisymmetric, while
the second term describes a strain-rate tensor if sym-
metric. On the other hand, the latter is “magnetic”
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characterizing edge and screw dislocations in crystals.
Based on this formalism, we derive the momentum

polarization, at zero temperature in a gapped fermion
system,

P i
k =

occ∑
n

∫
ddπ

(2πh̄)d
πkA

i
n�π , (2)

where �π is the momentum, the summation is taken
over the occupied states, the Berry connection is given
by Ai

n�π = ih̄ 〈un�π|∂πi
un�π〉, and un�π is the Bloch eigen-

state. Then the AM is obtained by the antisymmetric
part of the momentum polarization,

Lk = εijkP
ji =

occ∑
n

∫
ddπ

(2πh̄)d
εijkA

i
n�ππ

j . (3)

Since the Berry connection is regarded as the expecta-
tion value of the position operator in the Wannier ba-
sis, this Berry-phase formula really indicates �� = �x× �p
in the momentum space.

Here we define the nonsymmetric viscosity by η i j
k l =

∂T i
k /∂

(
−T l

j0

)
. As well as the AM formula, we obtain

η i j
k l =

1

h̄
εijm

occ∑
n

∫
ddπ

(2πh̄)d
πkπlΩn�πm

fn�π , (4)

where fn�π = f(εn�π −µ) is the Fermi distribution func-
tion and the Berry curvature is defined by Ωn�πk =
ih̄2εijk

〈
∂πiun�π|∂πjun�π

〉
. The proper HV is obtained

as its symmetric part. Especially in two dimensions,
the antisymmetric part yields

ηH =
1

4h̄

∑
n

∫
d2π

(2πh̄)2
�π2Ωn�πzfn�π . (5)

These expressions are quite analogous to that for the
Hall conductivity, corresponding to the charge trans-
port. The integrand just differs in the factor of �π.
By applying these formulas to the Bogoliubov–de

Gennes system, we obtain the AM for gapped chiral
SCs at zero temperature

Lz = −h̄
∑
�k

( �A�k × �k)z = h̄mN0/2 , (6)

which is consistent with γ = 0, and shows the relation
to the HV, Lz = 2ηH. See, for example, for the recent
microscopic studies suggesting γ = 0.3)
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