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Duality and integrability of supermatrix model with external source’

T. Kimura*!»*2
: N,M
' In quan‘Fum ﬁelq theory, in order’ to compute correla- v _ H Do d- o EW @ W )i —usb,
tion functions, it is convenient to introduce the gener- N,M:p,q = i AYj
i,J

ating function by adding an extra source term. Such a
generating function is defined in the sense of path inte-
gral, and thus it is quite difficult to compute in general.
However, in the matrix model, just a zero dimensional
theory, a number of methods for computation are es-
tablished, which are also applicable to the model with
the external source. In this report we generalize the
duality of the matrix model with the external source
with a characteristic polynomial, which was originally
found in the Gaussian matrix model,") to the super-
matrix model with an arbitrary matrix potential.

The correlation function of the characteristic poly-
nomial in the supermatrix model, which we study here,
is given by
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where 7 is a size N + M Hermitian supermatrix, and
the external source is C' = diag(as,...,an,b1,...,byr).
This formula includes several useful situations, e.g., the
ordinary characteristic polynomial average (M = q =
0), the average of inverses (M = p = 0), and the ra-
tio average (M = 0). Therefore it provides a master
formula for the characteristic polynomial average in
various matrix models.

The matrix measure in the integral is invariant under
the supergroup transformation, dZ = d(UZU ') with
U € U(N|M), which is expressed in terms of eigenval-
ues, dZ = Ay (z;y)2dNxdMydU. Here the Jaco-
bian is given by the Cauchy determinant,
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Then, to compute the intgral, we now introduce the
Harish-Chandra—Itzykson—Zuber formula for the su-
pergroup U(N|M )%
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Applying this formula, we obtain the following expres-
sion for the matrix integral in terms of eigenvalues
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Since the Cauchy determinant can be written as a de-

terminant
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withi=1,...,.N,j7=1,... M, k=1,...,.N— M, if

N > M, we obtain the determinanal formula for the
characteristic polynomial average
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where we have introduced auxiliary functions:
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The formula (6) actually shows a duality between
the external source and the characteristic polynomial,
which is just given by Laplace (Fourier) transforms,
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This is because the auxiliary functions transform
to each other through the Fourier transformation:
P_1(z) & Q;—1(a), R(z;y) < R(a;b), SL(A\;b) <
Sr(a; p).
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