Advanced development of GARIS-II using He-H₂ mixture as a filled gas toward the study of superheavy element

D. Kaji,^{*1} K. Morimoto,^{*1} H. Haba,^{*1} Y. Wakabayashi,^{*1} M. Takeyama,^{*1,*2} S. Yamaki,^{*1,*3} K. Tanaka,^{*1,*4} and K. Morita^{*1,*5}

Performance of a gas-filled recoil ion separator (GARIS-II) has been investigated using various asymmetric fusion reactions^{1–5)}. The studies have indicated that the separator has a large transmission under a low-background condition in comparison with GARIS and that the separation of unwanted particles is improved using He-H₂ mixture as a filled gas. The low-background condition is very important for identifying superheavy elements (SHE) produced with a low cross section of pb-order. Therefore, the usefulness of He-H₂ mixture as a filled gas toward the study of SHE was investigated further in this work. As a typical example, results for ²¹⁴Th, which was produced via the reaction of ¹⁹⁷Au(²³Na,6n), are given here.

The reaction products of ²¹⁴Th were separated inflight from projectiles and other by-products using GARIS-II, and then they were guided into a double sided silicon detector after passing through a time-offlight detector¹⁻³⁾. The separator was filled with He-H₂ mixture gases with various H₂ mixing ratios (0, 10, 20, and 36%). The gas pressure was maintained 47 Pa.

The yields of ²¹⁴Th, which was assigned from an α -transition of 7.678 MeV, were measured by varying the fraction of H₂ composition from 0 to 36% as shown in Fig. 1. Each yield is plotted against the magnetic rigidity $B\rho$. The optimum $B\rho$ value was determined by fitting to the data points using a Gaussian function. The optimum $B\rho$ value was shifted from 1.711 to 1.821 Tm by increasing the mixing ratio of H₂ from 0 to 36%, and the yields of ²¹⁴Th were enhanced 1.43 times.

The shift of the optimum $B\rho$ value implies that the equilibrium charge state \overline{q} of recoil ions moving in a filled gas becomes small. The \overline{q} , which was deduced from the optimum $B\rho$ values, are plotted against the mixing ratio of H_2 in Fig. 2. The \overline{q} was decreased with increasing H_2 composition. The \overline{q} in pure H_2 can be estimated to be 3.58 using empirical systematics, which was obtained using a Dubna gas-filled recoil separator DGFRS⁶⁾. Interpolated values of \overline{q} between 4.28 and 3.58 in the case of pure He and H_2 are indicated as a broken line in Fig. 2. The interpolation well agrees with the obtained \overline{q} values using various mixing ratios within an error bar. On the other hand, the transmission is improved with increasing the mixing ratio of H₂, although the width parameter $\Delta B \rho / B \rho$ becomes slightly worse from 8.4% to 9.4%. To establish a suitable condition to study SHE using the He-H_2 mixture, further investigation is in-progress.

Fig. 1. Yield curve of ²¹⁴Th as a function of magnetic rigidity for various He-H₂ mixture gases (○:pure He, ▽:10% H₂, □:20% H₂, △:36% H₂). Each solid curve is a Gaussian function fitted to data points.

Fig. 2. Equilibrium charge state of ²¹⁴Th ions moving in a He-H₂ mixture. Interpolation between experimentally obtained \bar{q} of 4.28 and estimated \bar{q} of 3.58 from DGFRS's work⁶⁾ is indicated as a broken line.

References

- D. Kaji et al.: J. Radioanal. Nucl. Chem. 303, p.1523 (2015).
- 2) D. Kaji et al.: JPS Conf. Proc. 1, p.013051 (2014).
- D. Kaji et al.: Nucl. Instrum. Methods B 317, p.311 (2013).
- D. Kaji et al.: RIKEN Accel. Prog. Rep 47, (2014) [In print].
- D. Kaji et al.: RIKEN Accel. Prog. Rep 46, p.189 (2013).
- Yu. Ts. Ogganessian et al.: Phys. Rev. C64, p.064309 (2001).

^{*1} RIKEN Nishina Center

^{*2} Department of Physics, Yamagata University

^{*&}lt;sup>3</sup> Graduate School of Science, Tokyo University of Science

^{*4} Department of Physics, Saitama University

^{*5} Department of Physics, Kyushu University