Zn-substitution effects on distorted tetrahedral spin-chain system Cu₃Mo₂O₉[†]

H. Kuroe, *^{1,*2} T. Sekine, *¹ I. Kawasaki, *² I. Watanabe, *² and M. Hase *³

The Zn-substitution effects on Cu₃Mo₂O₉ were studied. This compound has a quasi one-dimensional distorted tetrahedral spin system made of $S = 1/2 \text{ Cu}^{2+}$ ions.¹⁾ The multiferroic properties below the Néel temperature $T_{\rm N} = 8$ K has been reported based on macroscopic measurements.²⁾ The substituted Zn ions cut the magnetic chain directly and reduce the magnetic order. We have reported a novel magnetic ground state based on some macroscopic measurements for the heavily (5.0%) Zn-substituted sample. ³⁾ To obtain a microscopic viewpoint of the Zn-substitution effects on Cu₃Mo₂O₉, we measured muon spin rotation/relaxation spectra in (Cu,Zn)₃Mo₂O₉ with ARGUS spectrometer at Port 2. We prepared single crystals of lightly (0.5%) and heavily (5.0%) Zn substituted Cu₃Mo₂O₉ through continuous solid-state crystalization.⁴⁾ The sliced single crystals are placed in the Variox cryostat with the ³He sorption refrigerator. We measured the backward-forward asymmetry spectrum $A_{\rm BF}(t)$ defined as

$$A_{\rm BF}(t) = [A_{\rm B}(t) - \alpha A_{\rm F}(t)] / [A_{\rm B}(t) + \alpha A_{\rm F}(t)] \quad , \tag{1}$$

where $A_{\rm B}(t)$ and $A_{\rm F}(t)$ are the signal from the backward and the forward counters, respectively. A parameter $\alpha \sim 1$ is introduced to correct the small misalignment of the system. The signals from the muons stopping at the Ag foil on the crystals are removed using the comparison of $A_{\rm BF}(t)$ under the transverse magnetic field of 20 G at temperatures below and above $T_{\rm N}$. We found that approximately 75% of the implanted muons are stopped at the crystal.

Fig. 1. Normalized asymmetry spectra at 0.3 K in $(Cu,Zn)_3Mo_2O_9$ in (a) and their fast Fourier transformation in (b). The upper scale in (b) denotes the internal field working on the muon stopping site(s).

Fig. 2. Normalized internal fields in $(Cu,Zn)_3Mo_2O_9$, the magnetization taken from ref. 1, and the saturation magnetization calculated based on the Brillouin function as functions of the temperature normalized by T_N .

Figures 1(a) and 1(b) show the μ SR time spectra and their fast Fourier transformations, respectively. In pure $Cu_3Mo_2O_9$ and the Zn-0.5% sample, the signals are very similar, indicating the same magnetic ground states. The oscillation frequencies of the μ SR time spectra in Fig. 1(a) correspond to the dominating components in the frequency-domain spectra of Fig. 1(b) due to the muon precession around the internal field of 650 G. The beat on the oscillating spectrum at approximately $0.7 \ \mu s$ in Fig. 1(a) and the weak peak at 750 G in Fig. 1(b) indicate the two kinds of internal magnetic fields. In the Zn-5.0% sample, the rapidly decaying oscillation in the time-domain spectrum and the widely distributed frequency-domain spectrum were observed as shown in Figs. 1(a) and 1(b), respectively. We conclude that the magnetic ground state of the Zn-5.0% sample is different from the ones in pure Cu₃Mo₂O₉ and the Zn-0.5% sample.

In Fig. 2, we show the normalized amplitudes of the dominating internal field in $Cu_3Mo_2O_9$ and the Zn-0.5% sample and that of the averaged internal field in the Zn-5.0% sample as functions of temperature normalized by T_N . These normalized amplitudes have similar temperature dependences with the normalized magnetization because of the weak ferromagnetic component of the spin moment in pure $Cu_3Mo_2O_9^{11}$ as well as the temperature variation of the saturation magnetization in a ferromagnet calculated based on the Brillouin function. These facts indicate that the order parameter of this multiferroic phase transition is the sublattice magnetization.

References

- 1) T. Hamasaki et al.: Phys. Rev. B 77, 134419 (2008).
- 2) H. Kuroe et al.: J. Phys. Soc. Jpn. 80, 083705 (2011).
- 3) H. Kuroe et al.: J. Kor. Phys. Soc. 63, 542 (2013).
- 4) K. Oka et al.: J. Cryst. Growth 334, 108 (2011).

[†] Condensed from the article in JPS Conf. Proc. **2**, 010206 (2014)

^{*1} Physics Division, Sophia University

^{*&}lt;sup>2</sup> RIKEN Nishina Center

^{*&}lt;sup>3</sup> Natuional Institute for Material Science (NIMS)