Gamma-Spectroscopy around 100Sn

D. Lubos,1,2,19 J. Park,1,2 M. Lewitowicz,1,4 R. Gernhäuser,1,4 M. Nishimura,1,2 H. Sakurai,1,5 H. Baba,1,2 B. Blank,1,6 A. Blazhev,1,7 P. Boutachkov,1,8 F. Browne,1,9 I. Celikovic,1,4 P. Doornenbal,1,2 T. Faestermann,1,11 Y. Fang,1,10,12 G. de France,1,3 N. Goel,1,8 M. Gorska,1,8 S. Ilieva,1,11 T. Isobe,1,2 A. Jungclaus,1,12 G. D. Kim,1,13 Y. Kim,1,14 D. Kojouharov,1,8 M. Kowalska,1,14 N. Kurz,1,8 Z. Li,1,15 G. Lorusso,1,16 K. Moschner,1,7 I. Nishizuka,1,16,17 Z. Patel,1,17,12 M. Rajabali,1,16 S. Rice,1,17,12 H. Schaffner,1,8 L. Sinclair,1,18,12 P. A. Söderström,1,2 K. Steiger,1,1 T. Sumikama,1,16 H. Watanabe,1,19 Z. Wang,1,3 J. Wu,1,12,12 and Z. Y. Xu1,5,12

An experiment for studying the superallowed Gamow-Teller decay of the doubly magic nucleus 100Sn was performed in June 2013 at the high-resolution separator BigRIPS at the RIKEN Nishina Center. A 4-mm 8Be target was bombarded with a 124Xe beam of 345 MeV/u at intensities up to 36.4 pnA to produce 100Sn and a large cocktail3 of its neighboring nuclei down to neutron numbers $N = (Z - 2)$ by fragmentation. The nuclei were implanted into the WAS3ABi silicon detector that consists of 3 detectors with high granularity extended by 10 additional single-sided, seven-fold segmented detectors in a closed stack geometry to absorb the emitted β-particles at a maximum efficiency. This WAS3ABi detector was surrounded by 84 Ge- and 18 LaBr-detectors of the 4r-γ-ray spectrometer EURICA.

In order to study the branching ratios of the β-decays, derive level schemes of exotic nuclei and determine isomeric ratios as well as lifetimes of the isomers, a reliable efficiency calibration has been performed. Owing to the special geometry of the WAS3ABi and the failure of several Ge-detectors, the calibration was performed using a $\gamma\gamma$-coincidence method. Cascading γ-transitions in 98Cd, 94Pd and 96Pd, fed by different isomers, are available with a large number of counts. For example the delayed γ-emission in 98Cd always contains a complete chain for the energies 147 keV, 198 keV, 687 keV and 1395 keV. Thus, the ratio of coincident events of a pair of transitions and the total number of events for one of them directly yields the efficiency at the corresponding energy. This method is of great advantage since the radiation, originating in the implantation region, contains the detector-specific absorption effects and it does not introduce systematic uncertainties that is usually introduced by simulation based methods. Efficiency calibrations, consistent with previous works4, using this $\gamma\gamma$-coincidence method are shown in Fig. 1.

In addition, greater precision of known isomer half-lives was attainable owing to high statistics in this experiment and preliminary half-lives of 8^+ and 12^+ isomers in 98Cd were determined as 181$^{+35}_{-25}$ ns and 228$^{+5}_{-5}$ ns, respectively. This would lead to better constraints on the transition strengths for the test of modern shell models. Previously reported γ-rays in the β-decay of 100Sn1 were reproduced, allowing an unprecedented $\beta\gamma\gamma$-coincidence analysis for 100In. Moreover a new high-spin isomeric state in 96Cd has been observed with a half-life of about 200 ns, with a decay branch into both, the 16^+ isomer and the (10$^+$) state, which has a prompt decay cascade to the ground state. Further analysis is underway to finalize experimental results and compare these to large-scale shell model calculations.

Fig. 1. Absolute γ-ray efficiency of the HPGe clusters of EURICA. γ-rays from isomers of 98Cd, 94Pd and 96Pd, are used for the fit. Bars indicate the statistical uncertainty of the efficiencies.

References