β-Decay half-lives of 76,77Co, 79,80Ni and 81Cu: experimental indication of doubly magic 78Ni†

In order to study the nuclear shell evolution around 78Ni, the β-decay half-lives of neutron-rich nuclei, i.e., 76,77Co, 79,80Ni and 81Cu were measured for the first time. The experiment was performed as part of an EURICA campaign at the RIBF facility, RIKEN in 2012. A high-intensity 238U beam was accelerated up to an energy of 345 A MeV by the RIKEN cyclotron accelerator complex before hitting a 3-mm-thick beryllium target to produce secondary beams via in-flight fission. The 238U beam was delivered at an average current of 5 pA to the production target position. During the 13 days of the experiment, about 1.2×10^{11} 78Ni nuclei were identified and delivered to the experimental decay station at the end of the ZeroDegree spectrometer.

Figure 1 shows the experimental results (solid symbols) and the values in the literature (open symbols) as a function of the neutron number. Due to the fifth power relation between the half-life and its $Q_β$ value, a linear relationship between $\log_{10} T_{1/2}$ and the neutron number of the parent nucleus is expected phenomenologically when $Q_β$ evolves smoothly in an isotopic chain. In Fig. 1 this linearity is clearly visible below $N \approx 50$. Beyond that, a sudden reduction is seen in the $Z = 28$ isotopic chain due to the shorter half-lives of 79,80Ni with reference to the systematics at $N \leq 50$. The fast β-decay processes in 79,80Ni could be attributed to the neutrons outside the $N = 50$ shell, which result in higher $Q_β$ values and β-decay rates of 79,80Ni compared to that of 78Ni.

1 Condensed from the article in Phys. Rev. Lett. 113, 032505 (2014)
2 Department of Physics, University of Tokyo
3 RIKEN Nishina Center
4 University of Brighton
5 LPSG, Université Grenoble-Alpes, CNRS/IN2P3
6 ILL, Grenoble
7 Department of Physics, University of Notre Dame
8 Department of Physics, Peking University
9 Department of Physics, Tohoku University
10 Universidad Autónoma de Madrid
11 Instituto de Estructura de la Materia, CSIC
12 Atomi, Debrecen
13 HPCNC, Beijing University
14 Department of Physics, Osaka University
15 Department of Physics, Tokyo University of Science
16 Institut de Physique Nucléaire d’Orsay, IN2P3-CNRS
17 Università di Padova and INFN Sezione di Padova
18 GSI
19 Istituto Nazionale di Fisica Nucleare
20 Wright Nuclear Structure Laboratory, Yale University

Fig. 1. Experimental half-lives as a function of neutron number for isotopes with $Z = 27 - 31$. All the solid symbols represent the half-lives determined in this work while the open symbols are the half-lives taken from the literature. The systematic trends in the different isotopic chains are highlighted by lines connecting the data points with a smaller uncertainty.

In addition, a large gap can be noticed in Fig. 1 between the half-lives of the Co and Ni isotopes from $N = 44$ to $N = 50$. According to shell model calculations, this can be explained by the filled proton $f_{7/2}$ single particle orbit (SPO) in Ni isotopes. In this case, the proton produced in the β decay of Ni isotopes fills the $\pi f_{7/2}$ SPO above $\pi f_{7/2}$, leading to a reduction of the $Q_β$ value and longer half-lives of Ni isotopes than those of Co isotopes. The newly measured half-lives of 76,77Co follow the decreasing trend with considerable gaps relative to those of the corresponding Ni isotones, indicating an almost constant $Z = 28$ shell gap without significant quenching up to $N = 50$.

References
3) P. Hoerner et al.: Phys. Rev. C 82, 025806 (2010);