LET-dependent effect on mutation induction DNA repair-deficient background in Arabidopsis thaliana

K. Ishii,*1 Y. Kazama,*1 Y. Shirakawa,*1 S. Ohbu,*1 and T. Abe*1

A previous study on the effect of LET on inducing mutation revealed that the most effective value of LET (LETmax) on dried seeds of Arabidopsis thaliana was 30.0 keVµm⁻¹, within a range 22.5 to 640 keVµm^{-1.1}) LET is therefore an important factor in mutation induction. In the mutagenesis process, the DNA double-strand break (DSB) repair system is concerned with the production of mutations. There are two major DSB repair pathways: non-homologous end joining (NHEJ) and homologous recombination repair (HRR) function in eukaryotic cells.²⁾ NHEJ and HRR are independent pathways. HRR is a relatively error-free pathway because it utilizes the homologous region of a sister chromatid to repair the damaged strand, whereas the NHEJ pathway is relatively error-prone.

To determine whether DSB repair pathways are involved in the LET-dependent effect on mutation induction, we intended to investigate the effect of LET in the DSB repair-deficient background. We planned to measure the mutation rates after heavy-ion beam irradiation with LET values 22.5 and 30 keV μ m⁻¹ in the three mutant lines: 1) the HRR pathway-deficient mutant line, 2) the NHEJ pathway-deficient mutant line, and 3) both HRR and NHEJ pathway-deficient mutant line. Here, we report the mutation rates of the *Rad54*-deficient mutant as the HRR pathway-deficient mutant line.

Seeds of the APG3^(+/-) mutant (CS16118) and the AtRad54^(-/-) mutant (SALK 038057) were obtained from the Arabidopsis Biological Resource Center (ABRC, Ohio State University) and the European Arabidopsis Stock Centre (NASC, the University of Nottingham), respectively. The $APG3^{(+/-)}$ mutant carries BASTA-resistance at the APG3-disrupted allele, and a uniformly heterozygous population can be selected as photosynthetic and BASTA-resistant seedlings.³⁾ The uniformly heterozygous population facilitates investigation of the mutation frequency in the irradiated (M_1) generation by calculating the proportion of the number of plants with white sectors on true leaves to that of total plants with true leaves (Fig. 1). The *AtRad54*^(-/-) mutant carries a kanamycin resistance. The $APG3^{(+/-)}$ plants were crossed with the $AtRad54^{(-/-)}$ plants. The F_1 seeds were germinated in the presence of BASTA (2 $\mu g/mL$) and kanamycin (50 $\mu g/mL$), and the germinated plants were replanted to pots. F₂ seeds were collected from the self-pollinated F_1 plants. In the F_2 generation, the photosynthetic and both BASTA- and kanamycin-resistant plants were screened. The second screening of the $APG3^{(+/-)}/AtRad54^{(-/-)}$ plants were conducted by PCR. A sufficient number of seeds were collected from progenies of the identified $APG3^{(+/-)}/AtRad54^{(-/-)}$ plants.

Heavy-ion beam irradiation was conducted as previously described³⁾ with some modifications. The seeds of the $APG3^{(+/-)}/AtRad54^{(-/-)}$ and $APG3^{(+/-)}/AtRad54^{(+/+)}$ plants were irradiated with ¹²C⁶⁺ ions with LETs of 22.5 or 30.0 keVµm⁻¹ at a dose of 300 Gy.

The mutation frequencies were obtained as previously described.³⁾ The mutation frequencies of $AtRad54^{(+/+)}$ plants were 3.0 and 6.6% when the LET values were 22.5 and 30.0 keVµm⁻¹, respectively, and they are significantly different (Table 1; p<0.05 with chi-square test). The mutation frequency of 22.5 keVµm⁻¹-irradiated AtRad54^(-/-) plants was 5.6%, which was at the same level as that of 30.0-keV μ m⁻¹ irradiated control (p \geq 0.05). It is assumed that because the HRR pathway is disabled, the error-prone NHEJ pathway mainly functioned to repair DSB. The mutation frequency of 30.0-keVµm⁻¹ irradiated AtRad54^(-/-) plants, however, was still 6.8%, which was at the same level as that of the control ($p \ge 0.05$). This result proposed a hypothesis: in the case of the 30.0-keVµm⁻¹ irradiation, in contrast to the 22.5-keVµm⁻¹ irradiation, DSBs occur beyond the capacity of the HRR pathway functions and are repaired mainly by the NHEJ pathway, leading to a high mutation frequency. Further analysis on other DNA repair gene-deficient mutants is in progress.

Fig. 1. Sector mutation caused by heavy-ion beam irradiation on the $APG3^{(+/-)}$ mutant. (A) A plant showing sector mutation. The leaf exhibiting mutation is indicated by the white arrowhead. (B) A plant not showing abnormal phenotype. Bars = 2 mm.

Table 1	LET-de	pendent	effect	on	indu	cing	mutation
14010 1.	LLI GC	penaene	011000	011	maa	- III 5	matation.

		0				
$I ET (leo Vum^{-1})$	Mutation frequency (%)					
LET (Kevµm)	$AtRad54^{(-/-)}$	$AtRad54^{(+/+)}$				
22.5	5.6 (916)	3.0* (2,241)				
30.0	6.8 (857)	6.6* (2,118)				

Numbers in parentheses indicate numbers of samples. *Kazama et al. (2012).

References

- 1) Y. Kazama et al.: Plant Biotechnol. 25: 113-117 (2008).
- 2) L. H. Thompson: Mutat. Res. 751: 158-246 (2012).

3) Y. Kazama et al.: Plant Biotechnol. 29: 441-445 (2012).

^{*1} RIKEN Nishina Center