Study of shape evolution in neutron-rich Cs isotopes using β-decay spectroscopy

Shape evolution in neutron-rich nuclei with the neutron number $N>82$ and the proton number $Z>50$ beyond the doubly magic 132Sn nucleus have been investigated along several isotopic chains. The EURICA project provides us with an opportunity to study extremely neutron-rich nuclei using β-decay and isomer-decay spectroscopy. We reported the results of the isomer-search experiment for neutron-rich Cs isotopes, where new isomers were found in 145Cs, 146Cs, 147Cs, and 148Cs. To understand the nuclear structure of these neutron-rich Cs isotopes in the low-spin states, we studied the β decay of neutron-rich Xe to Cs isotopes.

The neutron-rich Xe isotopes were produced through in-flight fission reaction using a 345-MeV/nucleon 238U beam. Particle identification was performed using the mass-to-charge ratio (A/Q) and the atomic number deduced from the information of time-of-flight (TOF), magnetic rigidity ($B\rho$) and energy loss of fission fragments through BigRIPS and ZeroDegree Spectrometer. The isotopes were implanted into a stack of five double-sided Si-strip detectors (WAS3ABi)11. β rays emitted from the isotopes were also detected by WAS3ABi. The parent nuclei of the β decay were identified by position correlation on the WAS3ABi between the implanted fragments and the detected β rays. γ rays emitted after the β decay were detected by the γ-ray detector array which is called EURICA1.

Figure 1 shows a spectrum of particle identification for the Xe ($Z=54$) isotopes as a function of A/Q. The fully-stripped $^{4+}$Xe ions are separated from the hydrogen-like $^{4+}$Xe ions owing to the high A/Q resolution.

Coincidence data of $\gamma-\gamma$ and $\beta-\gamma-\gamma$ with particle identification of 143Xe, 144Xe, 145Xe, 146Xe, and 147Xe isotopes is analyzed. As an example, the γ-ray energy spectrum and the decay curve for the β decay of 145Xe to 145Cs are shown in Fig. 2. We found 11 new γ rays associated to the transitions in 145Cs emitted after the β decay of 145Xe. These γ-ray peaks are represented as full circles in Fig. 2. Other peaks are mostly assigned to transitions in the granddaughter 145Ba nucleus. The inset in Fig. 2 shows the decay curve deduced by the time difference between the implantation of 145Xe and the detection of the β rays gated on newly found 5 γ rays in 145Cs. The half-life of the β decay was determined to be 197(10) ms, which is consistent with the reported one in Ref. 4. Detailed analyses are in progress.

Fig. 1. A/Q spectrum of neutron-rich Xe isotopes.

Fig. 2. γ-ray energy spectrum and decay curve of the β decay of 145Xe to 145Cs.

References