Spin-dipole response of 4He by using (8He, 8Li(1+))

The spin dipole ($\Delta S = \Delta L = 1$) of spin-isospin responses is connected with the tensor correlation in nuclei. Especially, on a double-closed nucleus, the SD excitation contribution is large because of the nucleon configuration. The SD excitation function was measured on 4He which is the lightest double-closed nucleus. This is important for the study of supernova nucleosynthesis with the neutrino-nucleus reaction\(^1\).

We conducted the exothermic charge-exchange (CE) reaction of 4He(8He, 8Li(1+))4H. CE reactions are powerful tools to study the spin-isospin responses. The spin-flip transition of 8He(0+) $\rightarrow ^8$Li(1+) can be identified by measuring the de-excited γ-rays ($E_\gamma = 0.98$ MeV) from the first 1^+ state of 8Li. The beam energy region of 100–300 MeV/nucleon is suitable for the study of the spin-isospin responses\(^5\).

The experiment was performed at the RIKEN RIBF facility by using BigRIPS\(^5\), the high-Resolution beamline\(^5\), and the SHARAQ spectrometer\(^5\). The 8He beam, which was produced via a projectile-fragmentation reaction with an 18O beam and 8Be target, was transported to the secondary target position at an intensity of 2 MHz. We used the liquid-4He target\(^6\) with a thickness of 120 mg/cm\(^2\). In order to determine the excitation energy using missing mass method, the momenta of 8He and 8Li at an energy of 100 MeV/nucleon were measured at the beamline and SHARAQ within the low-pressure multi-wire drift chamber (LP-MWDC)\(^7\) and cathode readout drift chamber\(^8\). The γ-ray detector array DALT2\(^2\) was placed around the target position to measure the 0.98 MeV γ-ray.

Figure 1 shows the missing mass spectrum of the (8He,8Li) reaction (black line). The contribution of both the 4He target and hydrogen is included in this spectrum. The region around 10 MeV and \sim17 MeV shows the 4He $\rightarrow ^4$H and 1H $\rightarrow n$ reactions, respectively. The 1H $\rightarrow n$ reaction originates at the plastic scintillator installed at the upstream of the target. The amount of contamination (red line) was estimated by using the energy loss of the LP-MWDC placed between the scintillator and the target. Thus, the 4He(8He, 8Li)4H reaction was obtained.

Further analysis to obtain the angular distribution and double differential cross-sections is now in progress to obtain the isovector SD strength of 4He.

References