Quadrupole collectivity in island-of-inversion nuclei
28,30Ne and 34,36Mg†


We report here on the in-beam γ-ray spectroscopy in very neutron-rich even-even nuclei of 28,30Ne and 34,36Mg by proton inelastic scattering using a liquid hydrogen target in inverse kinematics. The 30Ne nucleus has a conventional magic number of 20, and 36Mg is located in the middle of the shell closures of N = 20 and 28. The 30Ne and 36Mg are closer to the neutron drip line than the nuclei belonging to the so-called “island of inversion (IOI)”. We have studied the evolution of quadrupole deformations on the side with more neutrons and less protons than IOI. The report is a condensed version of our published paper1.

The experiment was performed using the RIPS beamline at the RIKEN Big Beam Factory: A radioactive secondary beam, containing neutron-rich nuclei 28,30Ne and 34,36Mg, was produced by fragmentation reactions from 63MeV/nucleon 48Ca. Details of the experimental setup around the secondary target and beam conditions are provided in Ref.1.

The angle-integrated cross sections for population of the 2+ states were obtained from the yields of the 2+ → 0+ transitions with γ-detection multiplicity equal to one. The spectra are shown in Figs. 3–6, 8 in Ref.1. The deduced cross sections and deformation lengths are summarized in Table 1.

The present results extended the measurements of quadrupole collectivity along Ne and Mg isotopic chains by providing deformation lengths with improved accuracies for 28,30Ne, 34Mg and a new measurement for 36Mg. The systematic trends of the deformation lengths are displayed in Fig. 1(a) and (b). The filled and open circles indicate the deformation lengths deduced in the present work and those that have been estimated from the previous results using the WP09 potential1, respectively. The thin black and thick orange error bars represent statistical and systematic errors, respectively. The points indicate previous results of Coulomb excitation experiments.

Figures 1(a) and (b) also display several theoretical results that can be compared to the experimental results. The solid-blue and dashed-red lines are predictions by AMPGCM3 and the shell model with the SDPF-M effective interaction4, respectively. The shell model calculations in a 0ω model space are shown by the green dotted5 and orange dotted6 lines. For Mg isotopes, the AMPGCM and SDPF-M calculations, which implement configuration mixing around N = 20, reproduce the systematic trend of experimental deformation lengths in a satisfactory manner. In addition, they agree with the trend for the Ne isotopic chain, although they both systematically overestimate the experimental values.

Table 1. Angle-integrated cross sections for the 2+ states and deduced deformation lengths in 28,30Ne and 32,34,36Mg.

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>σ(2+) (mb)</th>
<th>δ(2+,0+) (fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28Ne</td>
<td>23(2)</td>
<td>1.33 ± 0.06 (stat) ± 0.05 (syst)</td>
</tr>
<tr>
<td>30Ne</td>
<td>37(4)</td>
<td>1.59±0.05 (stat) ±0.07 (syst)</td>
</tr>
<tr>
<td>32Mg</td>
<td>40±5</td>
<td>1.85 ± 0.20 (stat) ±0.08 (syst)</td>
</tr>
<tr>
<td>34Mg</td>
<td>63±5</td>
<td>2.30±0.16 (stat) ±0.16 (syst)</td>
</tr>
<tr>
<td>36Mg</td>
<td>47±8</td>
<td>1.90±0.16 (stat) ±0.16 (syst)</td>
</tr>
</tbody>
</table>

*1 Center for Nuclear Study, University of Tokyo
*2 RIKEN Nishina Center
*3 Department of Physics, Tohoku University
*4 RCNP, Osaka University
*5 ATOMKI
*6 Department of Physics, Rikkyo University
*7 Department of Physics, Tokyo Institute of Technology
*8 Argonne National Laboratory
*9 Department of Physics, University of Tokyo

References