β -NMR measurement in coincidence with β -delayed γ rays of ^{41}S

Y. Ichikawa,*¹ Y. Ohtomo,*^{1,*2} Y. Ishibashi,*^{1,*3} T. Suzuki,*² T. Sato,*² K. Imamura,*^{1,*4} T. Fujita,*⁵ T. Furukawa,*⁶ K. Asahi,*² T. Egami,*⁷ C. Funayama,*² M. Hayasaka,*⁸ C. Hirao,*² S. Kojima,*² T. Komine,*² M. Matsumoto,*⁸ Y. Sakamoto,*² A. Takamine,*⁹ D. Tominaga,*⁷ H. Yamazaki,*¹ and H. Ueno*¹

We aim to measure the magnetic moment of the ground-state ⁴¹S, by combining the technique to produce spin-polarized RI beams¹⁾ and the method of β ray-detected nuclear magnetic resonance (β -NMR). In the previous experiment, the spin polarization realized in the $^{41}{
m S}$ beams implanted in a CaS crystal was measured to be $AP = -0.14(4)\%^{2}$ using the adiabatic field rotation (AFR) device 3). Since the AP value is the product of the asymmetry parameter A for the β ray emission and the degree of polarization P of 41 S, the small AP value may be attributed to a cancellation of A when various β -decay branches are mixed. Indeed, the decay scheme of ⁴¹S has not been established other than the observation of several β -delayed $\gamma \text{ rays}^{4}$. In order to avoid a possible cancellation of the A parameter, we have attempted to perform the β -NMR measurement in coincidence with the β -delayed γ rays, along with the normal β -NMR measurement⁵⁾.

The experiment was carried out at the RIPS at RIBF. The beam production of 41 S and experimental setup are common to the normal β -NMR measurement⁵⁾. The β -delayed γ rays emitted from 41 S in the CaS crystal located at the center of poles of the dipole magnet were detected with two Ge detectors set at a distance of 20 cm from the crystal. Each Ge detector has a relative efficiency of 35%. The data acquisition was system triggered by a γ -hit event defined by a logical OR of signals from the Ge detectors.

In this experiment, we have observed 3 β delayed γ rays of ⁴¹S with large yields, with energies of 131, 554 and 761, as shown in Fig. 1 (a), (b) and (c), respectively. To confirm the origin of these γ rays, the half lives associated with these γ rays were deduced from the decay curve spectra synchronized with the beam pulsing: 2.9 s for beam-on and 2.9 s for beam-off. Figure 2 shows the decay-curve spectra for the 131-keV γ ray in the beam-off period. The decay-curve was fitted to an exponential function on a constant background, and then, the half life was preliminarily determined to be 1.99(5) s, which is in good agreement with the previous value⁴, and the origin was confirmed to be ⁴¹S. Further analysis to obtain the NMR spectra in coincidence with these γ rays is in progress.

- *1 RIKEN Nishina Center
- *2 Department of Physics, Tokyo Institute of Technology
- *3 Department of Physics, University of Tsukuba
- *4 Department of Physics, Meiji University
- *5 Department of Physics, Osaka University
- *6 Department of Physics, Tokyo Metropolitan University
- *7 Department of Physics, Hosei University
- *8 Department of Physics, Tokyo Gakugei University
- *9 Department of Physics, Aoyama Gakuin University

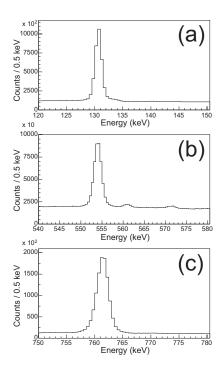


Fig. 1. $\beta\text{-delayed}~\gamma$ rays of $^{41}\mathrm{S}$ with energy of (a) 131 keV, (b) 554 keV and (c) 761 keV.

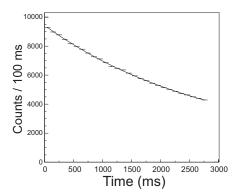


Fig. 2. Decay-curve spectrum for 131-keV γ ray. The half life was preliminarily determined to be 1.99(5) s.

References

- 1) K. Asahi et al.: Phys. Lett. B 251, 488 (1990).
- H. Shirai et al.: RIKEN Accel. Prog. Rep. 47, 39 (2014).
- Y. Ishibashi et al.: Nucl. Instrum. Meth. B 317, 714 (2013).
- 4) J. A. Winger et al.: AIP Conf. Proc. 455, 606 (1998).
- 5) Y. Ichikawa et al.: RIKEN Accel. Prog. Rep. 48 (in this report).