Interaction of 8B, unstable and loosely bound, with 208Pb: scattering and breakup

C. Signorini,11 A. Boiano,12 C. Boiano,13 C. Macea,14 M. Mazzocco,14 C. Parascandolo,12 D. Pierrouetsakou,12 A.M. Sánchez-Benitez,13 E. Strano,14 D. Torresi,14 M. La Commana,12 H. Yamaguchi,16 D. Kahl,16 Y. Hirayama,17 H. Ishiyama,17 N. Imai,17 N. Iwasa,18 S.C. Jeong,17,13 S. Kimura,17 Y.H. Kim,17 S. Kubono,16 H. Miyatake,17 M. Mukai,27 T. Nakao,27 Y. Sakaguchi,12 T. Teranishi,10 Y. Wakabayashi,13 Y.X. Watanabe,12 C.J. Lin,11 H.M. Jia,11 L. Yang,11 and Y.Y. Yang

The main motivation of this experiment was to investigate of the reaction dynamics induced by the radioactive ion-beam 3B, extremely loosely bound with S_p =137 keV, at Coulomb barrier energy: i.e., reaction cross section deduced from elastic scattering, as well as the transfer and/or breakup processes. The 8B beam, provided by the CRIB facility, was produced via the inverse kinematics reaction 3He(6Li, n) 8B. The primary 6Li beam intensity ranged from 1 to 3 μA in time of flight technique. The light charged particles not problematic since each beam species was identified via the various ions detected by the electronics, whereas we used for the 3He$^+$,4He, 3He, and protons (Fig. #1), confirming our preliminary estimates: namely, the existence of a consistent source had to be retuned twice owing to the total amount of transfer (p transferred with 7Be out) and breakup processes (\rightarrow 1Be+p, and possible subsequent 1Be breakup \rightarrow3He+3He). Preliminary data from the angular distribution of the 8B elastic scattering confirm our expectations of a strong absorption occurring in the 8B-induced reactions.

In all the runs we were able to verify the good capabilities of the homemade electronics for identifying the various ions detected by the ΔE silicon via the built-in timing. The light charged particles produced in the reaction were detected and identified with six ΔE-E telescopes, consisting of 40-50 μm + 300 μm double sided silicon strip detectors. The detectors were arranged symmetrically around the target at a distance of approximately 11 cm. All the detectors with the related electronics were brought from Italy, INFN1. For the E-detectors we utilized for the first time, ASIC digital electronics, whereas we used for the ΔE detectors low-noise electronics; these electronics were also fully developed in Italy2,3. The charged particles identified were 8B, 7Be, 6Li, 4He, 3He, and protons (Fig. #1), confirming our preliminary estimates: namely, the existence of a consistent

Fig. 1. ΔE-E$_{\text{rec}}$ identification of the different ions produced in the scattering of the cocktail 8B-7Be-3He beam onto a 208Pb target.

Fig. 2. Performances of the homemade electronics of the thin ΔE detectors. The measurement of the risetime signal vs. the energy loss allows for clear ion identification.

References