Production of ²¹⁵U and ²¹⁶U and attempt to produce ²¹⁹Np and ²²⁰Pu

Y. Wakabayashi,^{*1} K. Morimoto,^{*1} D. Kaji,^{*1} H. Haba,^{*1} M. Takeyama,^{*1,*2} S. Yamaki,^{*1,*3} K. Tanaka,^{*1,*4} K. Nishio,^{*5} M. Asai,^{*5} Y. Komori,^{*1} M. Murakami,^{*1,*6} T. Tanaka,^{*7} A. Yoneda,^{*1} and K. Morita^{*1,*7}

Theory¹⁾ predicts that nuclei with N = 126 exist up to Fm (Z = 100) because of the fission barrier arising from the ground-state shell effect. The heaviest N =126 nuclei reported so far is ²¹⁸U (Z = 92). In this program to study nuclei with N = 126, we attempt to produce heavier nuclei such as ²²⁰Pu. In previous experiments, a new isotope ²¹⁶U, which is the daughter nucleus of ²²⁰Pu and ²¹⁵U, were observed²).

We performed an experiment at the RIKEN Linear Accelerator (RILAC) facility. We used ⁸²Kr ion as an incident beam and ^{136,137,138}BaCO₃, ^{Nat}La₂O₃, and ^{Nat}CeO₂ as targets to study the ⁸²Kr + ^{136,137,138}Ba, ¹³⁹La, and ¹⁴⁰Ce reactions. Each target material was prepared by sputtering on 0.8–1.1-µm-thick aluminum foils so as to achieve a thickness of 300–500 µg/cm², and it was also covered with 40 µg/cm² of aluminum.The ⁸²Kr beams with energies of 365, 381 and 386 MeV were used to bombard these target foils mounted on a rotating target.

Evaporation residues (ERs) were separated from the beam particles and other products using a gas-filled recoil ion separator (GARIS), and they were implanted into a position-sensitive strip detector (PSD; 58×58 mm²). The PSD was boxed in four Si detectors (SSD) to catch α particles escaping from the PSD. Two timing detectors were set in front of the PSD to measure

Fig. 1. α -decay time (a) and energy (b) spectra for ²¹⁶U. The previous results are indicated by dotted arrows. Each ΔT indicates the time difference between each decay generation (α_p , α_d , and α_{gd}). The labeled energies $E_{\alpha 1}$, $E_{\alpha 2}$, and $E_{\alpha 3}$ for ²¹⁶U are specified. Observed α decay energies and half-lives are written with reported ones except for ²¹⁶U.

*1 RIKEN Nishina Center

- *2 Department of Physics, Yamagata University
- *³ Department of Physics, Saitama University
- *4 Tokyo University of Science
- *⁵ Japan Atomic Energy Agency
- *6 Department of Chemistry, Niigata University
- *7 Department of Physics, Kyushu University

the time-of-flight (TOF) of the ERs. Time information was also used to distinguish between the α -decay events in the PSD and the recoil implantations. A Gedetector was placed 6 mm behind the PSD to measure the γ -rays coinciding with the α -decays. The isotopes were identified by using an α -decay chain with known α -decay properties of the descendants and the position correlations between the implanted ERs in the PSD and the subsequent α -decays.

In this experiment, we confirmed the production of ²¹⁵U and ²¹⁶U by observing one chain and six chains, respectively, including the candidates of new transitions. For the decay chains of 216 U, the α -decay energies and decay times are shown in Fig. 1. These decay events and cross sections are summarized in Table 1, and we labeled the decay energies with $E_{\alpha 1}$, $E_{\alpha 2}$, and $E_{\alpha 3}$ temporarily. For a new transition, $E_{\alpha 2}$ of 216 U may be a transition from isomer-state in 216 U to ground-state in ²¹²Th as well as an isomer state of $^{218}\mathrm{U}$ with the $\alpha\text{-decay}$ energy of 10678 keV^3). In the attempt to produce 219 Np and 220 Pu using the 82 Kr + ¹³⁹La and ¹⁴⁰Ce reactions, cross section upper limits of 28 pb and 46 pb, respectively, were obtained. Further discussion, such as the interpretation of new transitions, is ongoing.

Table 1. α -decay events of ²¹⁵U and ²¹⁶U. The time and position difference between the implanted ERs and the α -decay are ΔT and ΔX , respectively. E_b represents the ⁸²Kr beam energy at the center of the target.

	E_{α}	ΔT	$ \Delta X $	Reaction (E_b) &
	(keV)	(ms)	(mm)	Cross section
²¹⁶ U	8408^{2}	6.98	0.2	$^{137}\text{Ba} + ^{82}\text{Kr}$ (366)
$(E_{\alpha 1})$	8371	3.95	0.2	$\rightarrow {}^{216}\mathrm{U} + 3n$
	8379*	0.43	0.5	22^{+14}_{-9} pb
^{216}U	10518	2.50	0.2	
$(E_{\alpha 2})$	10459^{*}	0.43	2.3	
^{216}U	8254	1.81	0.1	$^{136}\text{Ba} + ^{82}\text{Kr} (350)$
$(E_{\alpha 3})$	8265*	3.40	0.2	$\rightarrow {}^{216}\mathrm{U} + 2n$
				$58^{+77}_{-38} \text{ pb}$
$^{215}\mathrm{U}$	8436^{2}	5.82	1.0	$^{136}\text{Ba} + ^{82}\text{Kr}$ (373)
$(E_{\alpha 1})$				$\rightarrow {}^{215}\mathrm{U} + 3n$
^{215}U	8230^{2}	0.64	0.4	31^{+28}_{-18} pb
$(E_{\alpha 2})$	8283	2.10	0.2	

* Sum energy of PSD and SSD.

References

- H. Koura: Prog. Theor. Exp. Phys. 2014, 113D02 (2014).
- Y. Wakabayashi et al.: RIKEN Accel. Prog. Rep. vol.47, xxii (2014).
- A.P. Leppänen et al.: Eur. Phys. J. A25, Supplement 1, 183 (2005).