Shell-model study of Gamow-Teller transition from ¹⁰⁰Sn

M. Honma,*1 T. Otsuka,*2,*3,*4 T. Mizusaki,⁵ Y. Utsuno,*6 N. Shimizu,*3 and M. Hjorth-Jensen*4,*7

In the previous report¹⁾, we presented the results of shell-model calculations with an effective interaction determined for the use around $^{100}\mathrm{Sn}$. We adopted the model space consisting of four orbits $1p_{1/2},\,0g_{9/2},\,1d_{5/2}$ and $0g_{7/2}$ assuming a hypothetical "core" $^{76}_{38}\mathrm{Sr}_{38}.$ Starting with a G-matrix interaction, 2) the Hamiltonian parameters were modified by iterative fits to experimental energy data. The shell-model results reasonably described the systematics of energy levels and electromagnetic transitions for nuclei around $^{100}\mathrm{Sn}.$

As a next step, we report on the Gamow-Teller (GT) transition from $^{100}\mathrm{Sn}$ using the same shell-model framework. Since $^{100}\mathrm{Sn}$ is a doubly-magic, jj-closed N=Z nucleus, some similarity to $^{56}\mathrm{Ni}$ is expected. In the case of $^{56}\mathrm{Ni}$, the GT transition is dominated by the $\pi f_{7/2} \to \nu f_{5/2}$ excitation, and in the extreme single-particle picture the final state is described by a 1p-1h configuration on top of the closed $^{56}\mathrm{Ni}$ core. However, according to the realistic shell-model calculations, the GT strengths are distributed over many states due to the configuration mixing. We have reported that the "double-peak" structure in the strength distribution becomes significant after including 4p-4h components. Therefore it is interesting to examine whether the similar structure could be seen in the case of $^{100}\mathrm{Sn}$.

Since the GT transition from $^{100}\mathrm{Sn}$ should be dominated by the $\pi g_{9/2} \to \nu g_{7/2}$ excitation, we can expect a reasonable description in the present model space. At the price of the lack of some (possibly minor) components such as the $\pi d_{5/2} \to \nu d_{3/2}$, the present model space allows us to take into account the effects of sufficiently many np-nh configurations. The calculated GT strength distribution is shown in Fig.1. Although we don't see clear "double-peak" structure in this case even at the t=5 truncation level, the splitting of the strength becomes significant as more and more particle-hole configurations are included.

In the recent β -decay experiment of $^{100}\mathrm{Sn^4}$), a possible "superallowed" GT transition corresponding to $B(\mathrm{GT})=7.6^{+2.2}_{-2.5}$ was observed. The analysis was made under the assumption that the GT decay goes into the single final 1^+ state of $^{100}\mathrm{In}$. This assumption was supported by large-scale shell-model calculations in the gds model space, which predict the concentra-

tion of a large part (69%) of the GT strengths on the lowest 1^+ state. In the present calculation, the GT decay goes mainly into the lowest three states, and the 1_3^+ state carries the largest strength as shown in Fig.1 ($B(\mathrm{GT})$ =2.8 including the standard quenching factor of 0.74). Further analysis is desired for clarifying the GT strength distribution and the corresponding closed-core structure.

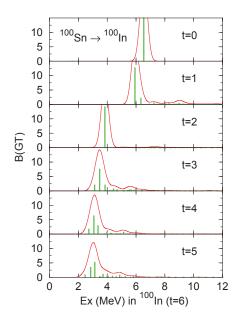


Fig. 1. The GT transition strength from 100 Sn calculated by the shell model varying the truncation order t, which stands for the number of nucleons allowed to excite from the lower orbits $(p_{1/2}, g_{9/2})$ to the higher orbits $(d_{5/2}, g_{7/2})$. The discrete strengths indicated by thick vertical bars are obtained by the prescription in Ref.⁵ through 100 Lanczos iterations, and they are folded by Gaussian of σ =0.5MeV as shown with a smooth curve. No quenching factor is considered for the purpose of comparison. The shell-model results are obtained by using the efficient code MSHELL64⁶.

References

- 1) M. Honma et al.: RIKEN Accel. Prog. Rep. 47, in press.
- 2) M. Hjorth-Jensen et al.: Phys. Rep. 261, 125 (1995).
- 3) M. Honma et al.: RIKEN Accel. Prog. Rep. 46, 45 (2012).
- 4) C. B. Hinke et al.: Nature 486, 341 (2012).
- R. R. Whitehead: in Moment Methods in Many Fermion Systems, edited by B. J. Dalton et al. (Plenum, New York, 1980), p. 235.
- 6) T. Mizusaki et al.: MSHELL64 code (unpublished).

^{*1} Center for Mathematics and Physics, University of Aizu

^{*2} Department of Physics, University of Tokyo

^{*3} Center for Nuclear Study, University of Tokyo

^{*4} National Superconducting Cyclotron Laboratory, Michigan State University

^{*5} Institute of Natural Sciences, Senshu University

Advanced Science Research Center, Japan Atomic Energy

^{*7} Department of Physics and Center of Mathematics for Applications, University of Oslo